人妻无码一区二区三区AV_日韩人妻无码专区久久_欧美巨大xxxx做受高清_内射中出日韩无国产剧情_无码爽大片日本无码AAA特黄_在线播放免费人成毛片乱码_国产一区不卡第二页_国产一级特黄不卡在线
佳學基因遺傳病基因檢測機構排名,三甲醫(yī)院的選擇

基因檢測就找佳學基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學基因準確有效服務好! 靶向用藥怎么搞,佳學基因測基因,優(yōu)化療效 風險基因哪里測,佳學基因
當前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準嗎

(1) 環(huán)境壓力是如何降低精子質量和降低男性生育能力的;(2)哪些化學元素會導致男性生殖系統(tǒng)的氧化應激和免疫遺傳學改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機制的變化相關,作為男性生殖條件的病理生理障礙的標志;(4)免疫遺傳性疾病的環(huán)境應激因素如何伴隨男性不育和反應;環(huán)境和遺傳危險因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責任編輯:佳學基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關的政策法規(guī),嚴禁發(fā)布色情、暴力、反動的言論。
評價:
表情:
用戶名: 驗證碼: 點擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學基因醫(yī)學技術(北京)有限公司,湖北佳學基因醫(yī)學檢驗實驗室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設計制作 基因解碼基因檢測信息技術部

人妻无码一区二区三区AV_日韩人妻无码专区久久_欧美巨大xxxx做受高清_内射中出日韩无国产剧情_无码爽大片日本无码AAA特黄_在线播放免费人成毛片乱码_国产一区不卡第二页_国产一级特黄不卡在线 精品视频中文字幕在线| 日韩91麻豆精品视频在线观看| 国产在线精品观看一区二区| 精品a∨视频在线观看一区二区| 精品久久国产激情视频| 91麻豆精品激情 在线观看| 婷婷综合久久精品| 亚洲中文欧美日韩| 国产aⅴ夜夜欢一区二区三区 | 5g免费影院永久天天影院在线| 黄三级日本一区二区| 成人婷婷综合天堂| 国内网友自拍视频在线免费观看| 亚洲自偷自拍视频| 伊人色综合视频一区二区三区| 精品伊人中文字幕| 午夜影视网站在线观看| av丝袜美腿中文字幕| 欧美黑人成人免费全部| 欧美国产丝袜在线观看| 国内精品久久久久久久| 亚洲一级淫片在线高清播放| 国产成人啪免费视频| 天天路综合网中文字幕在线观看| 中文亚洲欧美日韩无线码| 在线观看中文字幕亚洲| 久久久一级精品黄色片| 亚洲国产电影在线观看精品| 欧美激情精品久久久久久不卡 | 亚洲夫妻免费色黄视频在线播放| 日韩激情极品一区二区| 在线观看免费不卡顿av| 欧美日韩中文字幕另类| 亚洲人妻偷拍第一区| 伊人久久狠狠综合| 91蜜臀精品视频| 久久国内精品自在自线400部| 亚洲图片欧美日韩| 91麻豆精品激情 在线观看| 国产精品一区二区久久| 日本a网站在线观看视频| 99久久无色码中文字幕婷婷| 五月婷婷,六月丁香| 在线观看亚洲国产一区二区三区| 熟女少妇精品一区二区| 久久超级碰碰碰一区二区三区| 猫咪在线观看视频最新地址| 精品日韩久久久久久久| 中国美女免费黄片视频| 欧美 自拍 日韩 国产| 亚洲开心网伊人久久国产精品| 精品国产免费第一区| 六月丁香婷婷色狠狠久久| 精品久久久久久中文字幕2017 | 日韩欧美中文国产| 国产精品高潮呻吟久久久久久| 中文高清在线中文字幕日韩| 久久女人精品天堂av影院麻豆| 亚洲精品区中文字幕| 高潮少妇白浆一区二区| 91中文字幕视频在线永久观看| 国产精品麻豆久久久麻豆| 日韩一区二区亚洲| 日韩视频在线播放网站免费| 岛国av一区二区三区免费看| 免费网站一区二区三区| 亚洲v韩国v欧美v精品| 久久国产精品老熟女| 精品久久久久久久久久久ai| 亚洲 欧洲视频免费| 午夜在线成年人免费观看| 国产人妖一区二区在线| 亚洲最新人妻在线| 国产免费一区二区三区播放 | 日韩专区免费网站| 久久久精品欧美综合| 一区二区三区视频黄片| 成年人在线免费看av| 弄得少妇高潮一区二区网站| 日韩av中文在线字幕| 欧美 日本 国产 在线a∨观看| 亚洲国产麻豆人人爽人人澡| 国产色视频一区在线播放| 欧美极品视频中文字幕| 成人精品视频免费久久久| 黑人人妻一区二区三区| 国产三区欧美精品| 在线中文字幕日韩在线| av中文在线观看免费| 激情国产av做激情国产爱| 久久精品一区二区免费播放| 日韩视频在线播放一区| 欧美激情一区自拍| 二区视频在线观看| 婷婷六月久久综合丁香中文| 国产一区二区三区香蕉| 日韩亚洲国产av影片| 国产欧美又大又黄| 日韩欧美综合一区| 国产丶亚洲丶欧美综合| 亚洲 综合 欧美在线| 国产精品久久久一区二区视频| 精品国产18禁久久久久久| 欧美日韩x8x8视频在线观看| 欧美日韩国产三级一区二区三区| 伊人色在线综合网| 日本免费一区二区三区在线视频| 成人特级毛片69免费观看| 国产成人精品视频一区| 国产原创激情一区二区三区| 国产精品久久72| 亚洲中文国内精品福利第一页| 亚洲激情五月天久久| 国产精品片三区乱淫人成人| 国产精品悠悠久久| 天天摸夜夜操免费视频| 精品亚洲视频欧美| 国产精品国产三级国产一区| 伊人精品久久久久| 欧美日韩国产在线无吗| 成人午夜av福利 成人午夜福利18 www成人午夜福利 | 日本欧美一区二区三区337p| 国产av高清区一区二区三区| 在线免费看片中文字幕| 国产原创在线观看91| 亚洲加勒比久久88色综合一区| 国产精品99久久99久久久不卡| 日韩一级美女视频免费观看| 欧美人在线观看免费高| 亚洲人禽杂交av片久久| 久久久久久黄色片| 亚洲欧美日韩一区天堂| 美女少妇喷水久久一区二区| 人妻体内一区二区三区| 亚洲美女视频在线观看黄片| 激情婷婷九九综合99| 99久久精品免费看国产高清| 精品国产乱码久久久久久公司| 视频一区二区三区不卡| 综合av电影不卡在线观看| 中文字幕免费日韩| 2022国产精品福利在线观看| 亚洲精品福利三区| 乱码电影在线观看欧美变态| 日本一级淫片免费放| 亚洲黄在线观看免费观看| 一区二区三区福利| 丝袜美女在线观看一区二区三区| 日本人妻精品视频| 91蜜臀精品视频| 亚洲2022av国产精品| 成人午夜福利专区| 亚洲中文字幕视频电影播放| 一区二区免费av| 亚洲午夜精品福利电影| 国产精品色网久久| 久久精品久久国产| 色综五月亚洲欧美婷婷| 中文字幕一区不卡在线观看的| av不卡网站在线下载免费观看| av网址大全在线观看中文字幕| 亚洲福利 中文字幕| 亚洲国产五月天久久| 久久性生大片免费观看性| 亚洲欧美aⅴ在线视频| 亚洲最新人妻在线| 色人综合在线视频| 蜜臀aⅴ国产精品久久久国产| 亚洲高清免费在线观看视频| 亚洲免费福利视频网| 亚洲avav久久| 午夜内射一区二区三区| 2021最新国产精品网站| 午夜av在线影院 国产精品免费看av | www.av在线| 久一午夜福利视频| 精品人妻中文字幕色站| 亚洲午夜永久精品免费| 一区二区三区三乱码精品毛片| 国产亚洲在线精品视频| 欧美男男GAYGAY巨大粗长肥| 国产在视频线精品www666| 视频一区视频二区同事| 亚洲国产日韩中文字幕| 日本高清中文字幕网站| 亚洲 综合 校园 欧美小说| 国产亚洲不卡一区二区三区| 国产在视频线精品www666| 国产精品一区二区三区日日夜夜| 欧美美女一区二区免费| 国产特级毛片aaaaaa| 中文字幕人妻诱惑在线| 久久久久久久国产av| 色婷婷一区二区三区99视频| 欧美 国产 在线 观看| 四虎精品一区二区永久在线观看| 亚洲国产综合性亚洲综合性| 亚洲精品成人高清视频| 亚洲v韩国v欧美v精品| 国产一区二区桃色av| 精品网站在线观看免费| 国产精品suv一区二区三区6| 欧洲精品在线观看| 欧美精品国产亚洲另类| 久久香蕉国产线看观看手机| 亚洲色婷婷一区二区三区| 精品98av一区二区三区| JAPANESE日本熟妇伦M0M| 136fldh导航福利微拍| 国产精品视频在这里有精品| 亚洲精品a在线观看视频| 美女视频黄在线观看| 国产精品国产三级国快看| 精品一区二区视频麻豆网神马| 加勒比av乱码一区| 91一区二区三区成人| 好好热在线视频精品| 欧美成人aaaaaaaa免费| 九九热在线精品视频观看| 日韩成人熟女一区二区| 精品久久久久久人妻无| 人妻少妇精品视频在线免费观看| 九九亚洲视频在线观看| 日本精品国产1区2区3区| av天堂亚洲国产aⅴ| 国产快播一区二区三区在线看| 午夜偷拍的视频久久久免费大全| 国产精品精品久久久久久潘金莲| 久久中文字幕视频网站| 日韩一区二区三区在线观看不卡| 最好看的中文字幕一区| 欧美日韩高清一本大道免费| 92看看一区二区三区在线观看 | 日本美女三级视频网站| 好看的熟女片一区二区| 99久久99久久精品国产图片| 中文字幕在线精品乱码麻豆| 精彩视频在线观看一区二区| 亚洲一区三区在线播放| 久久伊人不卡了精品酒店| 一级特黄大片av在线| 精品国产一区二区三区四区四| 成人在线视频观看日韩| 欧洲二区在线观看| 久久99国产66精品久久| 日韩精品久久久久久久18| 秋霞av鲁丝一区二区三区| 精品少妇一区二区av免费观看| 亚洲国产精品a62v一区二区| 日韩成人av免费观看网站| 国产精品又爽又黄一区二区三| 中文字幕 欧美一区| 在线观看免费亚洲黄色片| 亚洲高清福利一区二区| 日韩精品无码av成人观看| 深夜成人福利久久| 中文字幕在线观看视频欧美精品| 亚洲欧美自拍另类图片| 在线三级日韩三级国产三级| 国产一区二区一一区在线观看| 欧美亚洲色图一区二区| 国产在线精品观看一区二区| 五月婷欧美国产中文字幕| 国产97一卡二卡在线播放| 国产麻豆一区二区三区视频| 天天一区二区三区av| 在线天堂中文www官网| 艳欲精品一区二区三区| 国内精品久久久久影院优| 国产三级在线观看不卡| 99国产一区二区在线| 亚洲国产精品人人做人人爱j| 欧美,日韩久久中文字幕1| 亚洲欧美国产中文日韩| av免费在线一区二区不卡| 婷婷六月综合久久| 日本在线观看视频不卡一区 | 国产乱码一区二区视频| www.久久精品| 国产三级精品三级男人的天堂, | 亚洲人妻乱交在线视频| 国产高清不卡在线观看av| 日本欧美一区二区视频在线观看 | 国产三级黄片一区二区三区| 91中文字幕视频在线永久观看| 成人av天堂中文在线| 88久久精品国产欧美一区二区| 韩国三级国产精品一区| 九九视频在线观看6伊人| 国产乱淫aⅴ一区二区三区| 2021自产拍在线观看视频| 国产丝袜一区二区在线观看| 国产又粗又猛又爽av| 久久蜜臀亚洲一区二区| 精品久久无套内射| 日韩影院成人精品| av伊人久久免费久久atav| 亚洲精品中文字幕久久久久| a v天堂中文字幕在线| 国产v一区二区高清| 字幕中文日韩欧美| 色人综合在线视频| 亚洲成人黄色手机在线观看| 国产又大猛又大粗av一区| 狠狠综合久久久久综合网小蛇| 国产日韩欧美久久| 中文字幕卡在线观看| 久久精品制服丝袜一区二区| 九九热视频在线观看一区 | 噜噜麻豆九九久久| 一级片欧美中文字幕| 亚洲一区久久精品| 一夜七次郎国产精品亚洲| 亚洲av永久综合在线| 老熟女精品视频12区| 人妻体内一区二区三区| 欧美综合视频一区二区| xxxxwww69| 人人妻免费在线视频| 丰满无码人妻熟妇无码区| 啊啊啊啊色国产又黄又爽| 亚洲福利 中文字幕| 亚洲中文字幕国产区| 成人在线一区二区网站| 五月激情欧美综合网| 偷国产乱人伦偷精品视频香蕉| 韩国精品在线观看| 亚洲人成人无码www影院| 欧美成人中文字幕视频网站| 国产福利一区二区三区四区五区| 伊人久久狠狠综合| 亚洲日本∨a中文字幕久久| 亚洲欧洲中文日韩a乱码| 精品人妻av区乱码久久蜜臂| 永久黄网站色视频免费网站 | 日本一级淫片免费放| 欧美人与性动交另类| 国产熟女一区二区精品视频| 亚洲黄色午夜福利视频| b精品调教b欧美| 乱码日韩中文字幕| 二区一区欧洲在线观看| 久久综合精品色伊人| 国产情色视频在线免费观看| 日韩精品无码av成人观看| 午夜免费高清网站| 熟女熟妇伦AV网站| 在线观看中文字幕亚洲| 欧美黄色一区二区三区| 亚洲三级成人在线观看| 丁香啪啪激情综合开心网| 91精品国产自产在线观永久| 午夜精品女人香蕉区| 视频一区视频二区视频三区精品| 久久一区二区成人精品| 亚洲一区在线免费观看91| 日韩欧美综合网在线观看| 欧美日韩中文字幕另类| 亚洲成人精品字幕| 亚洲乱亚洲乱妇41p国产成人| 亚洲精品美女久久777777| 肉丝精品一区在线观看| 亚洲国产成人精品女人久久…| av片一区二区三区| 中文字幕三区在线播放| 久久av一区二区三区软件| 欧美国产综合一区| 亚洲欧美一区二三区| 日本免费不卡中文字幕| 日韩精品中文字幕人妻免费电影 | 免费精品99久久香蕉国产| 人人爽人人澡人人喊| 2021自产拍在线观看视频| 日韩中文字幕无马| 精品久久欧洲精品| 亚洲 成人 欧美 国产91 日本视频高清www色 | xxxwww欧美性| 乱码日韩中文字幕| 99在线热这里只精品视频| 久久久亚洲一区二区影视| 福利一区二区视频在线免费观看| 国自产拍精品偷拍视频| 欧美日韩激情视频免费观看| 国产熟女一区二区三区黄| 成人漫画免费观看入口| 日韩乱码av一区二区| 在线观看免费不卡小黄片| 亚洲成人色电影在线观看| 国日韩精品一区二区三区| 国产美女丝袜高潮白浆网站!| 亚洲日本精品一级| 久热视频这里只有精品68| 欧美成人精品一二三区| 亚洲国产综合久久精品| 四虎在线免费播放| 亚洲国产日韩欧美视频三区| 国产精品福利视频合集| 日本美女黄p在线观看| 欧美a级片一区二区| 亚洲精品中文字幕一区二区三区| 国产欧美自拍他拍在线观看| 超碰97在线人人| 一区二区三区在线观看电影网站| 老熟女精品视频12区| 欧美日韩黄色一区| 成人午夜视频网站免费在线观看 | 精品亚洲女同一区二区| 少妇精品偷拍高潮少妇在线观看| 欧美 自拍 日韩 国产| 欧美不卡一区二区视频在线观看| 日韩中文乱码字幕| 欧美日本最新在线一区视频| h视频在线观看欧美日韩| 视频一区二区视频在线| 欧美色一区人人妻人人妻3d| 肉色丝袜足j视频国产| 亚洲av乱码久久精蜜桃av| 亚洲综合久久久888| 亚洲中文欧av不卡| 亚洲福利 中文字幕| 超碰蜜臀在线一区二区| 在线不卡中文字幕播放| 黄色一区二区日韩| 亚洲av一级二级三级| 中文字幕亚洲人妻色偷偷久久 | 粉嫩极品国产在线2020| 51成人精品午夜福利| 无码精品不卡一区二区三区| 久久999国产高清精品| 波多野结衣精品无人区| 欧美日韩国产长车超污| 精品a∨视频在线观看一区二区| 久久国内一区二区| 夜色福利在线视频观看| 久久99国产综合精品免费多人| 91久久香蕉国产线看观看软件| 亚洲欧美aⅴ在线视频| 欧美日韩大尺度一区二区| 免费在线看黄国产精品| 中文字幕96久久激情亚洲精品| 日韩av大全在线播放| 人妻激情偷乱一区二区三| 人妻中文字幕不卡有码视频| 手机看片国产永久免费在线观看| 蜜桃在线精品一区| 国产麻豆一区二区三区视频| 亚洲中字幕永久在线观看| 精品久久久中文字幕二区| 日韩av中文字幕免费观看| 亚洲人妻乱交在线视频| 亚洲一区二区在线观看中文字幕| 欧美日韩免费播放一区二区| 国产精品高清不卡在线电影院| 成人午夜视频网站免费在线观看| 伊人久久大香线蕉aⅴ色| 999久久精品人妻| www.国产精品毛片| 五月婷婷,六月丁香| 欧美午夜精品久久久久久老年| 黄色网址网站 久久| 麻豆影视国产日韩欧美一区二区| 粉嫩av夜夜澡人人爽人人| 国产精品免费麻豆入口| 不卡中文字幕视频在线| 免费观看日本在线观看视频| 欧美日韩精品成人网站二区| 亚洲精品一区二区视频网站| 欧美,日韩久久中文字幕1| 亚洲中文欧美日韩| 日韩av片无码一区二区不卡| 国产人妖ts一区二区| 亚洲v成人www新版精品久久| 中国福利视频一区二区| 蜜乳一区二区视频在线观看| 久久深夜国产福利| 偷窥少妇久久久久久久久| 国产精品亚洲精品在线观看| 手机在线国产一区二区| 国产偷V国产偷V亚洲高清| 久久久尹人香蕉网| 亚洲综合视频在线播放| 美女aaaa黄色一级片免费的| 美女视频免费区一区二区三| 国产欧美日韩一区二区三区| 香蕉视频久久免费| 久久99九九视频一区二区| 亚洲国产高清久久久| 98超碰人人与人人欧美| 尤物在线国产精品| 尤物在线国产精品| 动漫精品专区一区二区三区| 久久婷婷国产911| 亚洲欧美日韩一区天堂 | 日韩一区国产一级| 不卡在线观看免费黄片视频| 黄色片一区二区三| 91精品久久久久久久久| 天天摸夜夜操免费视频| 日韩美女视频资源吧a| 国产成人精品电影在线播放| 精品二精品一区二区视频| 国产av一区二区三区五区| 国产精品久久久久久人妻爽| 最新女同一区二区av网站| 日本欧美一区二区三区视频麻豆 | a∨色狠狠一区二区三区 | 天堂不卡一区区在线网| 久久99久久精品| 在线观看啪视频中文字幕| 国内精品久久久久久国产盗摄| 国产精品黄大片在线播放| 又爽又大又黄a级毛片在线视频| av男人天堂综合网| 亚洲a版天堂一区二区三区| 亚洲免费精品网站—亚洲精品| 欧美日韩在线亚洲一区蜜芽| 日韩成人免费在线中文字幕| 午夜xx免费视频| 欧美亚洲日本综合精品在线| 国产精品24时在线播放| 免费av 一区二区| 国产精品porn| 久久超级碰碰碰一区二区三区| 亚洲国产三级不卡| 丝袜美女在线观看一区二区三区| 日韩欧美网站在线观看视频| 中文字幕国产视频一区| 澳门精品久久国产| 亚洲女人被插尤物视频| 2021年国产精品久久| 国产自产21区激情综合一区| 一区二区在线看91| 一区二区三区 国产| 熟女aⅴ一区二区三区| 精品国产乱码久久久久久a丨| 粉嫩白浆国产精品| 99久久精品久精品| 国产成人av高清在线观看| 国产黄色美女免费看| 91久久一区二区三区| 最近中文字幕在线一区| 亚洲最大在线观看视频网站| 精品98av一区二区三区| 免费人成视频在线观看网址| 欧美人成视频一区二区| www.99精品| 天堂精品三级在线观看| 日韩欧美一级特黄| 国产中文精品色婷婷综| 亚洲不卡一级电影观看| 午夜免费在线高清观看av| 黄色国产免费观看网站性色av| 日韩精品免费视频看| 中文字幕永久在线播放| 午夜久久久久久亚洲欧美| 中文字幕在线视频日韩精| 久久伊人不卡了精品酒店| 美女网站尤物在线观看| 午夜福利在线观看h蜜臀| 欧美内射精品在线观看| 夜鲁鲁鲁夜夜综合交换视频| 欧美亚洲日本视频| 久久亚洲女同第一区综合| 国产成人av高清在线观看| 欧洲日韩中文在线| 亚洲精品视频在线观看免费网址| 丁香啪啪激情综合开心网| 青青草精品视频在线播放| 欧美激情另类一区二区| 亚洲精品第一综合久久| 久久久999中文字幕| 午夜免费高清网站| 精品一区二区大香蕉视频偷拍| 91久久一区二区三区| 日韩成人在线观看视频| 日韩欧美成人午夜福利| 欧美日韩久久亚洲| 国产福利诱惑一区| av黄色免费手机在线播放网址| 日本久久丰满的少妇三区| 久久精品94久久精品不卡| 人妻一区二区三区人妻黄色| 美女张开腿国产91| 亚洲福利爱爱爱视频| 在线观看不卡日韩视频| 丁香婷婷综合精品六月初| 探花在线视频一区二区三区| 日本日本一本色道网站| av网址不卡在线免费观看| 99精品国产免费观看视频| 好吊妞一区二区三区视频| 亚洲欧洲日本在线观看视频| 久久夜色精品国产噜噜| 动漫精品专区一区二区三区| 婷婷中文字幕综合在线视频| 老熟女无套内射国产视频| 欧美人成视频一区二区| 18av国产一区在线观看| 免费一本色道久久一区熟人区| 欧美福利一区二区三区| 日本aⅴ一二区在线观看| 国产99视频精品免费视看6| 日韩av 中文字幕在线不卡| 亚洲欧美日韩另类在线播放| 国产精品久久久久开码性色av| 亚洲熟妇精品久久久久| 午夜爽爽久久久毛片| 蜜臀视频一区三区| 午夜久久福利天堂av| 欧美97色欧美一区二区日韩| 最近最新中文字幕视频在线观看 | 久久国产精品视频免费播放| 国产高清一区国产高清二区| 欧美精品成人a多人在线观看| 亚洲aⅴ国产av综合av| 日韩欧美福利一区二区三区| 人妻少妇精品专区性色a∨| 日韩二区三区少妇| 亚洲乱码av中文区| 日本黄色视频精品一区| 免费久久久中文字幕观看视频| 精品亚洲视频欧美| 精品乱码一区内射人妻无| 噜噜噜久久亚洲精品| av中文不卡在线播放| 美女网站尤物在线观看| 日本二区在线观看| 精品婷婷在线观看| 亚洲精品网站免费观看视频| 亚洲性色av大片在线播放| 亚洲成人精品字幕| 精品久久午夜精品电影| 亚洲天堂网av在线| 日本高清视频不卡码| 美女黄色免费国产| 性欧美精品xxxx| 国产精品综合色区av| 欧美日韩精品不卡播放视频| 亚洲熟妇中文字幕日产乱码| 天堂资源在线观看亚洲av| 岛国毛片视频网站免费| 亚洲色图精品一区二区三区| 日韩福利国产精品| 欧美日韩亚洲国产九色91| 亚洲av网站在线免费| 一级黄色大片中文字幕| 人妻少妇精品专区性色a∨| 亚洲美女视频在线观看黄片| 欧美日韩国产免费一区二区三区| 欧美人妻日韩一区二区三区| 日韩精品一区二区av自拍| 乱码乱淫人妻少妇av| 国产三级黄片一区二区三区| √天堂中文www官网在线| 伊人一区二区三区四区黄片| 成人免费视频在线看| 使劲快高潮了国语对白在线| av日韩国产一区二区| 久久蜜臀av一区三区| 国产人成精品午夜在线观看| 8av国产精品爽爽在线播放| 亚洲国产欧美视频在线看| 欧美亚洲日本三区| a级黄片免费观看久久| 亚洲第一页第二页在线播放视频| 最新国产拍偷乱偷精品| 在线免费观看黄色网址| 99热精品在线观看| 欧美亚洲激情午夜网| 国产成人精品91| 中文字幕久久综合网| 久久精品波多野结衣| 精品人妻中文日本| 噜噜噜久久亚洲精品| 手机福利看片永久免费| 日韩美女视频资源吧a| 中文字幕视频在线不卡| 免费观看一区二区三区视频| 亚洲最大一级黄色片网站| 少妇9999九九九九在线观看| 欧美亚洲日本视频| 日韩亚洲国产av影片| 久久久久久蜜桃精品| 少妇特黄一区二区三区| 动漫精品专区一区二区三区| 日韩成人熟女一区二区| 日韩一区二区精品视频在线播放| 国产精品国产一级a| 18国产精品久久久| 久久综合天天日夜| 手机在线不卡一区二区免费视频| 国产精品亚洲第一| 日韩中文乱码字幕| 新搬来的女邻居麻豆av评分| 黄色中文字幕在线网站| 国产精品久久久久久久久久影院| 最新国产の精品合集bt伙计| 亚洲免费一区二区网站| 午夜福利在线观看h蜜臀| 男女成人亚洲精91品在线| 欧美成人午夜视频在线| 国产成人av在线播放| 中文字幕第99页| 国产乱码一区二区视频| 国产又粗又黄又猛视频| 中出中文字幕制服在线观看| 国产丶亚洲丶欧美综合| 日韩欧美高清国产视频| 欧美不卡顿一区二区| 91香蕉视频在线观看一区二区| 日韩不卡中文在线视频网站 | 97精品国产91久久久久久| 久久精品在线视频| 一区二区三区亚洲网站啪啪| 亚洲欧美日本国产一区| 少妇一级二级三级| 亚洲色图精品一区二区三区| 欧美黄色三级在线不卡| 国产日韩精品在线一区二区| 国产在线精品一二三区不卡| 亚洲狠狠人妻一区| 日本免费不卡中文字幕| 久久久久成人免费一区二区| 久久国产精品免费一区六九堂| 色偷偷人人澡久久超| 99精品国产乱码久久久| 日韩欧美大片免费观看在线观看| 精品中文字幕不卡在线观看| 亚洲国产天堂影院精品网| 国产人妖ts一区二区| 真人少妇高潮久久免费毛片 | 日韩欧美风情视频在线免费播放| 欧美福利一区二区三区| 国产又爽又色视频精品网站| 国产视频精品一区精品二区| 91在线国产在线一区视频| 青青青青青国产免费观看| 国产91对白在线播放边| 亚洲不卡大片在线观看视频| 毛片在线一区二区三区欲色| 亚洲av成人不卡一区二区| 一区二区九亚洲观看三区不卡女 | 日本欧美亚洲三级| 人妻中文字幕不卡有码视频| 日本在线激情免费播放刺激不卡| 国产日韩欧美视频一区二区三区| 又粗又黄又爽免费视频| 日韩精品一区二区三区www| 九一精品一区二区三区| 欧美激情啪啪啪一区二区| 欧美www日韩午夜视频| hs视频在线观看| 亚洲欧美中文字幕制服诱惑| 国产呦精品一区二区三区网站| 午夜免费成人福利视频| www.久久成人| 亚洲图片欧美日韩| 丝袜 国产 日韩 另类 美女| 亚洲国产欧美精品一卡二卡三卡| 精品日韩久久久久久久| 午夜视频一区在线| 国产 欧美 日韩制服| 中文官网天堂在线看| 高清精品一区二区三区| 91人妻人人爽人人精品| 在线免费日韩av| 精品网站在线免费观看| 国产人成精品午夜在线观看| 亚洲色图在线不卡激情视频| 中文字幕av资源在线观看| 精品夜夜嗨av一区二区| 2017天天干夜夜操| 欧美在线亚洲国产免m观看| 亚洲第一视频一区二区三区| 在线视频中文字幕1区| 欧美日韩国产免费一区二区三区 | 视频区国产亚洲.欧美| a毛看片免费观看视频| 亚洲国产综合性亚洲综合性| 亚洲欧美日本中文字幕| 午夜国产二三级黄色片| 欧美成人生活视频在线观看| 麻豆文化在线观看一区二区| 欧洲日韩中文在线| 国产精品久久久内射| 精品乱子伦一区二| 成人午夜淫片免费在线观看| 91人妻人人爽人人精品| 亚洲成色www久久网站不卡| 久久精品免费福利视频| 一级片在线免费播放| 日韩精品三级视频在线观看| 亚洲欧美日韩久久一区 | 国产suv精品一区二区12| 38电影一区二区三区久久久| 国产精品一国产av涩爱| 午夜久久成人福利视频| 日韩成人熟女一区二区| 老熟女无套内射国产视频| 亚洲免费一区二区网站| 手机看久久精品片| 国产原创在线视频| 亚洲精品中文字幕制服诱惑| 99免费观看视频三区| 欧美成人中文字幕视频网站 | 人妻熟女一区二区aⅴ| 国产成人精品免高潮在线观看| 亚洲中文欧av不卡| 日韩在线观看成人免费视频 | 国产免费一区三区三区视频| 老司机精品午夜视频在线| 日韩亚洲欧美亚洲天堂| 中文字幕 欧美一区| 国产美女福利最新网址在线观看| 美女黄色在线观看一区| 午夜久久黄色视频| 欧美www日韩午夜视频| 国产成人精品免高潮费视频| 国产白嫩白浆无套内射在线观看| 日本黄色视频精品一区| 美女在线一区二区| 乱人伦中文无码视频| 在线私拍国产福利精品| 国产视频精品久久久久不卡| 97精品国产91久久久久久| 国产刺激国产精品国产二区| 日本人妻中文字幕乱码系列| 国产精品欧美视频在线| 国产亚洲精品拍拍拍拍拍| 日韩欧美一区二区年费| 午夜久久黄色视频| 久久99国产综合精品免费多人| 成人免费看黄yyy456| 在线天堂av网站 在线免费av天堂 亚洲成人色电影在线观看 | 欧美国产成人精品| 国产suv一区二区| 激情福利在线观看| 日韩女优 国产高清在线播放| 中文字幕不卡三区视频| 国产精品久久久久久人妻爽| 性日韩xx一区二区在线| 日韩在线观看精品| 国产亚洲在线精品视频| 人妻体内一区二区三区| 久久WWW免费人成人片| 国产中文字幕乱码在线| 久久人妻久久久人妻| 国产精品黄色片视频| 视频免费观看一区二区| 亚洲视频在线不卡| 91精品在线亚洲综合| 久久久九九九精品视频| 999国产精品视频免费观看| 在线观看啪视频中文字幕| 欧美综合不卡顿视频在线观看| 国产美女无遮挡网址| 精品久久久久久久人妻换| 99久久精品免费看国产高清| 久久精品一中文字幕!| 久久亚洲国产毛片| 一区二区三区不卡在线| 九九视频在线观看6伊人| 亚洲国产日韩在线观看视频| 女性久久久久国产精品毛片| 最新中文字幕在线观看的av| 另类视频不卡视频国产不卡视频| 国产精品偷乱视频免费看| 日本欧美午夜精品一区二区| 99热精品在线观看白浆| 亚洲 欧洲 自拍 美女| 开心五月综合久久亚洲| 一级片在线免费播放| 国产成人在线综合精品| 麻豆果冻精品一区二区| 麻豆国产一区二区三| 欧日韩视频777888| 国产成人av在线网站网址| 亚洲视频在线不卡| 国产suv精品一二区| 亚洲av成人久久 亚洲网色| 99九九精品视频| 精品熟女久久久久浪| 美女最超碰免费观看| 国产a不卡片精品免费观看| 亚洲欧洲日本在线观看视频| 亚洲中文字幕高清一区| 制服 丝袜 日韩 中文| 黄色电影在线免费看| av中文不卡在线播放| 久久国产精品视频免费播放| 久久国产精品一国产精品金尊| 黄色的视频一区二区三区| 91麻豆精品91久久| 欧美视频在线免费观看黄片| 欧美综合视频一区二区| 99精品欧美一区二区三区蜜臀| 免费人成视频在线观看网址| 日韩视频免费在线观看一区| 亚洲精品第一国产| 亚洲欧美另类黄色小说| 精品人妻av区乱码久久蜜臂| 激情五月,激情综合网| 99精品国产乱码久久久| 欧美一区二区三区四高清视频| 国产精品久久久久久久嫩草影视| 欧洲美一区二区三区亚洲| 女同一区二区九九| 免费精品99久久香蕉国产| 久久婷婷国产911| 国产激情精品一区二区三区波野 | 亚洲免费一区二区网站| 久久国产欧美日韩视频| 综合激情久久婷婷| 日本国内一区二区三区四区视频| 久久久久久一草婷婷视频网| 亚洲国产精品免费线观看视| 日本中文字幕福利视频| 黄色av三级在线免费观看| 国产亚洲成人av在线麻豆| 在线观看中文字幕也色| 亚洲第一区av在线免费看| 在线观看啪视频中文字幕| 亚洲综合日产欧美| 美女搞基视频麻豆蜜桃久久| 夜色福利在线视频观看| 免费观看美女被靠视频网站| 亚洲爱爱视频完整版中文字幕| 欧美人与性动交另类| av网址在线免费观看| 国产97一卡二卡在线播放| 亚洲情综合五月天| 精品乱码中文一区二区三区| 欧美野外中文字幕第一页| 国产成人深夜免费观看视频在线| 亚洲不卡中文字幕无码| 精品国自产拍在线观看| 亚洲欧洲人人爽人人爽91av| 久久精品国产秦先生| 国产一区波多野结衣| 亚洲中文欧美日韩| 日韩网址制服诱惑中文字幕| 国产一区二区三区视频免费播放| 2021精品国产片久久免费看| 国产精品色网久久| 欧美日韩亚洲国产一区二区三区| 精品999久久久久久中文字幕| 欧美图片国产精品| av深夜福利免费观看| 日韩看片一区二区三区| 日韩专区免费网站| 乱中年女人伦av一区二区| 久久香蕉国产线看观看av| 亚洲第一页第二页在线播放视频 | 国产av一区二区又粗又长又爽| 可以免费观看的亚洲av| 久久婷五月综合网| 免费高清在线毛片| 丰满女人又爽又紧又丰满| 国产人妖av一区二区在线观看 | 国产精品不卡在线| 国产在视频线精品www666| 日韩在线观看成人免费视频| 激情福利在线观看| 国产粉嫩一区二区三区| 中文字幕在线观看视频欧美精品| 91在线二区三区| 日韩 亚洲 欧美 91| 美女网站黄是免费看| 在线观看永久中文字幕| av在线中文字幕有码| 激情视频一区二区三区在线观看 | 日韩 亚洲 欧美 91| 亚洲国产一区二区三| 亚洲中文字幕日本无线码| 日韩av三级在线| 欧美在线不卡高清视频| 我要看黄色1级片| 欧美日本日韩一二区视频| 一区二区在线观看夜视频| 福利一区二区国产| 欧美日韩国产长车超污| 91精品一区在线播放| 国产无遮挡又黄又爽免费| 日韩精品毛片视频| 国产三区四区五区在线观看| 国产一区二区三区香蕉| 一区二区三区亚洲在线视频| 97国产精品一区二区三| 国产日韩精品在线一区二区| 国产精品情趣视频诱惑一区二区| 少妇特黄一区二区三区| 精品亚洲女同一区二区| 日韩视频欧美亚洲国产| 欧美人妻少妇精品久久久| 国产女女同无遮挡互慰| 日韩人妻中文字幕日日骚| 日韩一区二区精品视频在线播放| 午夜福利在线播放免费| 麻豆一区二区91久久久| 亚洲欧洲中文日韩a乱码| 久久精品94久久精品不卡| 亚洲一区二区电影在线| 亚洲 婷婷 在线一区二区| 九九在线观看精品视频sese| 日韩欧美一区亚洲| 一本色道久久综合亚洲精品高| 性少妇mdms丰满hdfilm| 男人天堂一区二区av| 久久精品国产护士电影九一| 亚洲区另类春色综合小说| 中文字幕久久综合网| 熟妇女人妻丰满少妇中文字幕| 日韩字幕第三页日韩字幕第三页| 中文字幕乱码人妻系列| 精品久久久久久久中文字幕| 99久久久无码欧洲精品免费| 免费一级做a爰片久久毛片潮喷| 日本欧美午夜精品一区二区| 日韩在线精品高清制服中文字幕 | 久久久久久91香蕉国产蜜臀| 午夜精品久久久久麻豆影视| 欧美亚洲日本综合精品在线| 国产成人精品99| 欧美在线男人天堂| 精品久久无套内射| 亚洲精品国产96| 天堂最新一区二区三区| 一区二区三区av观看| 精品久久久久久久国产| 色婷婷久久综合中文久久 | 蜜臀久久久亚洲一级av| 精品国产一区二区三区四区四| 极品销魂美女一区二区| 成人午夜av福利 成人午夜福利18 www成人午夜福利 | 欧洲一区二区视频免费在线观看| 波多野结衣网站一区| 成a人片亚洲日本久久| 国产亚洲av美女网站在线看| 日本精品视频在线观看网站| 日韩专区免费网站| 日韩欧美制服人妻中文字幕 | 国产午夜精品乱码人妻老太太| 欧美日韩高清一本大道免费| 亚洲v韩国v欧美v精品| 亚洲一区免费视频| 一区二区三区在线观看电影网站| 人妻中文字幕在线四区| √最新版天堂资源网在线下载 | 手机看片1024一区二区三区| 国产精品久久久久1卡2卡| 亚洲欧美激情专区在线| 最好看的中文字幕一区| 亚洲乱亚洲乱妇41p国产成人| 国产亚洲欧美专区在线| 欧美精品一区二区自拍中文主播 | 人人妻人人添人人爽欧美二区| av中文在线观看免费| 可以免费观看的亚洲av | 91久久精品日日躁夜夜躁91| 日韩精品毛片视频| 亚洲综合另类专区在线| 亚洲美女诱惑久久| 日本免费一区二区视频网站| 日本动漫黄h在线观看免费| 久久精品视频在线视频| 人妻蜜桃av一区二区| 最新中文字幕在线观看的av| 中文字幕在线乱码观看av| 午夜影视网站在线观看| 国产精品免费麻豆入口| 中文字幕日韩一级| 亚欧洲精品在线视频| 中文字幕国产日韩在线观看| 2017天天干夜夜操| 日韩欧美大片免费观看在线观看| 国产精品porn| 国产原创激情一区二区三区| 中文有码在线观看| 中文字幕网在线中文免费| 国产白丝一区二区三区| 夜鲁鲁鲁夜夜综合交换视频| 日本韩国一区二区三区免费看| 男人添女人高潮在线观看| 日韩久久福利一区二区| 亚洲av网站在线播放| 精品少妇123区| 欧美日韩女电影在线播放.| 片多多在线观看影视资源| 成人综合网一区二区| av男人的天堂免费看| 亚洲成人黄色手机在线观看| 亚洲美女视频在线观看黄片| 成人高清在线观看91| 丰满岳乱妇久久久| 国产一区二区三区四区五区密私| 国产成人欧美日本电影在线观看| www.国产精品毛片| 日韩成人av一区在线观看| 久久综合精品色伊人| 国产视频福利一区二区三区| 午夜免费视频a区| 麻豆蜜桃一区二区三区| 人妻无码中文专区久久av| 午夜av在线影院 国产精品免费看av | 性视频网站在线亚洲区四虎| www.国产三级| 国产精品色网久久| 九九在线观看精品视频sese| 日韩三级另类视频| 在线视频中文字幕1区| 久久久国产精品x99av| 亚洲国产综合尤物| 在线观看视频一区二区精品| 久久精品福利免费观看| 成人漫画免费观看入口| 国产乱码精品一区二区vv| 人妻少妇精品专区性色a∨| 国产女人黄色一级土豆网站| 日韩一区二区三区在线观看不卡| 亚洲乱码国产乱码精品精男男| 日韩国产在线观看不卡| 中文字幕精品亚洲人在线| 欧美成人免费久久| 蜜臀av国产精品一区二区| 日韩精品高清视频在线| 欧美日韩中文字幕一区二区樱花| 色人综合在线视频| 久久国产香蕉视频| 日韩欧美综合网在线观看| 欧美大片日韩特一级在线观看| 欧美精品一区二区在线免费观看| 99精品视频免费在线观看| 国产精品视频我不卡| 国产一级二级三级在线| 成年午夜视频国产不卡播放源| 成人乱码一区二区三区av| 久久中文字幕偷偷| 亚洲视频日韩在线视频| 麻豆中字一区二区md| 国产精品第72页| 欧美激情一区日韩| 日本午夜少妇福利电影在线观看| 国内精品伊人久久久7777| 一区二区三区福利| 欧美色一区人人妻人人妻3d| 成人a毛片久久免费播放| 哦美激情中文字幕亚洲| 日韩美女精品黄片| 999九九九精品视频在线观看| 艳欲精品一区二区三区| 亚洲 国产 欧美日本性色| 91精品国产91久久网站| 欧美视频在线免费观看黄片| 久久天天躁日日躁狠狠躁| 亚洲成人日韩国产欧美| 免费乱理伦片奇优影院| 免费中文字幕日本| 国产精品123区| 一区二区三区久久久影视| 亚洲成人精品字幕| 在线观看一区二区不卡av| 九九亚洲视频在线观看| 丝袜制服国产精品一区二区| 秋霞电影在线五月婷婷激情综合 | 欧美 亚洲 综合 在线 | 亚洲精品超碰在线观看| 最新国产视频一区在线播放| 亚洲精品无码aⅴ中文字幕| 国产精品久久久久久女同| 美女网站尤物在线观看| 在线观看永久免费av| 日韩中文字幕在线三区| 国模精品无码一区二区三| 国产精品欧美日韩一区二区| 国产精品三极片久草网站| 久久女人精品天堂av影院麻豆| 中文字幕av资源在线观看| 亚洲欧美另类黄色小说| 成人av在线播放免费| 精品久久久久久综合网| 欧美不卡在线免费视频| 丁香五六婷婷久久| 深夜福利影院在线观看免费| 亚洲欧美精品久久久久影院| 国产精品久久久久久人妻爽| 高清中文字幕免费不卡视频| 日韩欧美国产免费看清风阁| 国产又粗又猛又爽又黄又大| 国产伊人精品99| 久久午夜少妇高潮毛片| 中文字幕对少妇高潮| 日韩欧美综合精品成人在线视频| 欧美 自拍 日韩 国产| 在线观看精品视频网站| 91av国产精品| 亚洲国产欧美视频在线看| 在线一级片一区二区三区| 久久国产精品秦先生| 欧美日韩国产我不卡一区| 使劲快高潮了国语对白在线| 亚洲人成人无码www影院| av男人的天堂免费看| 久久国产一二高清日本欧美亚洲| 丰满人妻少妇一区二区三区蜜桃| 无码毛片一区二区三区本码视频| 亚洲成人日韩欧美伊人一区 | 男女国产视频午夜| 精品网站在线免费观看| 精品视频中文字幕在线| 亚洲免费福利视频网| 色婷婷av777| 亚洲精品福利视频网站| 一级片欧美中文字幕| 日韩成人在线观看视频| 日本在线精品中文视频| 成人欧美一区二区三区视频xxx| 中日韩欧美一区二区视频| 欧美激情视频精品一区二区| 三级a做爰一女二男| JULIA手机在线观看精品 国产福利精品av综合导导航 | 日韩亚洲视频在线观看免费| 99影视在线视频免费观看| 中文字幕 亚洲精品| 免费看毛片的网站在线不卡顿| 精品国产网站在线观看91| 日本美女黄p在线观看| 国产精品福利资源导航| 久久精品手机免费看片| 在线观看国产高清免费不卡色| 九九热视频在线观看一区| 哦美激情中文字幕亚洲| 亚洲 中文在线视频| 国产孕妇孕交视频在线观看| 日韩精品高清在线一区| 日本人妻精品一区视频| 亚洲一区在线免费观看91| 美女拍拍拍免费视频观看| 亚洲中字字幕中文乱码| 国产精品大香蕉在在线| 久久精品夜夜夜夜久久| 久久久久久蜜桃精品| 欧美日韩黄色一区| www.久久久久| 精品一区二区三区无码免费直播| 亚洲人禽杂交av片久久| 精品视频精品91美女视频| 香蕉精品视频国产| 手机av免费在线观看| 久久超级碰碰碰一区二区三区| 亚洲成人福利资源网| 日本在线观看精品视频| 日韩精品欧美高清人妻| 久久夜色 精品一区| 国产h精品在线观看| 最新国产の精品合集bt伙计| 国产av中文字幕片| 午夜免费高清网站| 久久久久久人妻精品一区按摩| 久久精品成人一区二区三区 | 国产熟人精品一区二区| 中一区二区在线视频| 亚洲中文字幕一区熟女| 亚洲欧美人妻字幕| 手机在线观看视频欧美日韩| 午夜福利在线精品一品二区| 国产 日韩 欧美三级| 伊人中文字幕综合网| 欧美精品福利一区二区| 成人欧美一区二区三区视频xxx| 久久国产精品伊人| 欧美美臀电影国产精品一区二区| 99久久精品免费国产视频| 欧洲成年人av在线播放| 天堂а在线地址8最新版| 最近中文字幕在线一区| 激情福利在线观看| 亚洲精品第一国产| 国产资源一区二区在线播放| 午夜激情男女日本| 肉色丝袜足j视频国产| 亚洲女人被插尤物视频| av天堂一区二区三区精品 | 直接播放日本高清视频在线网站 | 亚洲欧美成人性小说| 亚洲狠狠人妻一区| 色哟哟哟—国产精品| 91人妻国产精品麻豆| 98精品国产综合久久久久| 一级片日本一区二区| 天天爱天天做天天爽夜夜揉| 少妇特黄一区二区三区| 日韩欧美一区视频| 蜜臀av国产精品一区二区| 午夜性色福利影院| 亚洲男人av一区二区三区| 中文字幕亚洲国产有码| 欧美视频一区二区免费不卡| 精品一区二区视频麻豆网神马| 欧美日韩免费一级黄片| 国产孕妇孕交视频在线观看| 日本人妻少妇视频专区| 欧美一区二区成人片国产精品| 黄网站色视频在线观看| 日韩亚洲av日韩乱码| 国产又粗又猛又爽黄| 自拍欧美日韩亚洲| 高清国产激情视频在线观看| 肥熟女巨臀亚洲一区二区三区| 2019午夜视频福利在线| 国产精品日本一区二区视频| 国产精品揄拍一区二区久久| 亚洲国产日韩欧美视频三区| www.91在线视频| 精彩视频在线观看一区二区| 日本欧美精品中文| 丁香婷婷激情综合五月天| 精品国自产拍在线观看| 久久久亚洲老熟妇熟女| 麻豆午夜激情视频| 日韩激情av在线播出| 日韩视频免费看第一区第二区| 日韩第一页在线观看| 日韩一级美女视频免费观看| 亚洲av国产综合一区| 国产高清色视频在线观看| 91在线二区三区| 精品久久无套内射| 亚洲一区在线视频在线播放| 正在播放老肥熟妇露脸| 久久精品国产精品| av网站大全在线观看| 少妇无套内射呻吟高潮久久久| 欧美一级大黄大色毛片视频 | 日本高清动作片www欧美| 不卡在线观看免费黄片视频| 国产亚洲精品a在线观看| 激情自拍亚洲欧美日韩| 91在线国产在线一区视频| 久久久免费精品免费中| 精品久久久久久久久久久ai| 亚洲精麻豆18av| 精品视频一区少妇| 亚洲欧美在线一区中文字幕| 国产av综合中文字幕| 日韩 欧美 国产 婷婷在线| 蜜乳一区二区视频在线观看| 精品视频中文字幕在线观看| 日韩av电影在线不卡观看| 国产精品电影久久久久电影网| 久久精品国产99久久99久久久| 亚洲国产欧美在线观看片不卡 | 一二三区精品夜色视频| 精品一区二区大香蕉视频偷拍| 手机在线国产一区二区| 2018在线观看欧美中文字幕| 欧美日韩在线观看视频平台| 人人妻人人添人人爽日韩欧美| h视频在线观看欧美日韩| 亚洲精品国产网红主播在线| 亚洲电影欧美电影一区二区| 精品国产乱码久久久久久蜜退臀| 成年动漫av网免费| 中国福利视频一区二区| 国产精品jizz在线观看下载| 欧美精品自拍视频在线看| 视频一区二区三区不卡| 人妻一区二区三区四区免费| 国产精品人久久久久久| 99精品欧美一区二区三区蜜臀| 中文字幕一区二区三区精品| 97超级碰碰碰碰精品| 性高潮久久久久久久香蕉| 亚洲不卡中文字幕无码| 人妻少妇精品视频在线免费观看| 亚洲第一区av在线免费看| 久久亚洲色www成人| 国产自免费在线观看| 五月婷婷色综合激情五月| 美女搞基视频麻豆蜜桃久久| 91亚洲精品免费在线观看| 亚洲中文字幕乱码人妻2| 日韩精品1区2区3区久久| 亚洲另类图片区小说区| 免费在线亚洲成人| 最新亚洲人妻系列| 国产呦精品一区二区三区网站| 中文字幕一区二区在线不卡视频| 色婷婷久久久wg精品| 国产精品亚洲第一| 澳门精品久久国产| 欧美一区二区三区免费在线观看| 最新的亚洲不卡的一区在线| 国产人v人人夜夜躁人人爽| 国产成人精品91| 国产午夜福利在线观看播放| 国产原创久久中文字幕| 国产av久久久久精东av| 99在线观看视频婷婷| 国产99久久久国产精品免费看| 亚洲欧洲日本在线观看视频| 久久夜色国产噜噜| 国产成人在线二区三区| 亚洲一区二区三区 视频| 日韩视频免费在线观看一区| 日本一区二区免费黄色| 亚洲欧美日韩一区天堂| 免费成人福利视频| 亚洲国产天堂影院精品网| 天天久久狠狠夜夜| 欧美一区二区三区免费在线观看| 尤物在线国产精品| 国产69精品久久久久观看| 亚洲一区免费视频| 偷拍亚洲欧美精品| 日本电影一区二区在线观看| 亚洲视频在线观看.| 色 综合 一区二区| 亚洲中文字幕无码卡通动漫野外| 熟妇女人妻丰满少妇中文字幕| 久久精品国产秦先生| 午夜免费成人福利视频| 欧美 亚洲 精品 麻豆| 国产精品久久久精品免费| 成人免费视频福利网| 国产男女无套在线观看| 亚洲欧洲久久五月激情| 亚洲综合一区精品无码| 一本一本久久a久久综合精品| 日韩精品亚洲三区| 可以在线看的av网站| 久久久久久久久国产毛片| 亚洲国产精品视频观看| 日韩不卡在线免费观看视频| a∨色狠狠一区二区三区| 不卡在线观看免费黄片视频 | 999九九九精品视频在线观看| 亚洲加勒比久久88色综合一区| 国产av久久久久精东av| 国产suv精品一区二区视频| 黄色av免费日韩一区二区| 一区二区三区国产精品自拍| 亚洲va中文慕无码久久av| 91麻豆产精品久久久久久| 亚洲无线码在线一区观看| 成人午夜淫片免费在线观看| 日韩大片在线观看视频免费| 国国产精品蜜臀av免费| 精品久久久久久久国产| 日韩视频在线播放一区| 日本一区二区三区四区国产| 亚洲精品自产在线免费播放| 日韩欧美素人制服中文| 中文字幕 欧美一区| 人妻美女交中文字幕| 国产香蕉97久久精品| 亚洲av国产综合一区| 精品乱码中文一区二区三区| 精品最新av在线播放| 国产日韩在线观看亚洲| 久久久久久蜜桃精品| 一个人免费午夜福利| 国产爽人人爽人人片av| 国产在线拍小情侣国产拍拍偷| 日韩精品毛片视频| 中文字幕av一区二区三区人妻少妇| 国产亚洲精品a在线观看| 国产成人在线综合精品| 欧美专区在线观看一区| 中文字幕无线码一区二区三区| 乱码日韩中文字幕| 亚洲三级成人在线观看| 亚洲精品福利三区| 99热精品在线观看| 精品卡通动漫亚洲v第一页| 日韩成人精品免费av| 日韩熟妇丰满人妻| av中文不卡在线播放| 中文字幕免费三级| 中文字幕视频人妻| 成人午夜福利专区| 成人免费在线观看免费| 日韩三级另类视频| www.日本在线视频观看| 在线观看成年人欧美| 中文字幕日韩第一精品| av福利一区二区三区| 日韩网站在线精品| 国产国产精品一区二区| 好吊妞一区二区三区视频| 91人妻人人爽人人澡精品| 亚洲国产精品三级在线观看| 国产美女女优网站免费观看| 久久夜色精品国产aⅴ| 欧洲97色综合成人网| 欧美 亚洲 另类在线| 国产熟女一区二区精品视频| 亚洲欧美卡通武侠古典偷拍| 亚洲码国产精品高潮在线| 亚洲乱码av一区二区蜜桃| 欧美成人生活视频在线观看| 日韩欧美综合网在线观看| 国产精品巨乳美女| 久久国产精品不卡一二三 | 亚洲乱码av一区二区蜜桃| 精品1区在线观看| 国产aⅴ夜夜欢一区二区三区| 国产激情av在线播放| 国产精品福利视频合集| 久久久一本精品99久久k精品66| 性色一区二区三区在线观看| 手机看片1024一区二区三区| 两个人免费看的日韩欧美视频| 国产99久久久国产精品免费看| 伊人依成久久人综合网| 国产av综合网站不卡| 国产看片一区二区三区| 久久国产精品成人免费| 中文国产成人精品久| 欧美激情视频精品一区二区| 精品不卡成人在线| 欧美乱码精品一区| 欧美中文日本在线观看视频| 51成人精品午夜福利| 制服丝袜av无码专区完整版| 国产亚洲av美女网站在线看| 亚洲精品国偷拍自产在线观看蜜臀| 黄片视频在线观看亚洲人 | 国产精品偷乱视频免费看| 中文字幕免费三级| 国产大学生情侣呻吟视频| 亚洲视频在线观看.| 国产视频一区二区三区亚洲| 国产午夜福利在线观看播放| 午夜福利视频1区2区| 色老头在线观看一区二区三区| 久久综合国产精品| 欧美 色亚洲一区| 亚洲中文字幕日本无线码| 91亚洲精品免费在线观看| 国产精品视频我不卡| 亚洲美女高清aⅴ免费视频| 亚洲欧美国产丝袜网站| av在线免费电影三区四区| 在线免费观看av不卡| 国产成人精品99| 国产精品久久久久久码AV| 中文高清在线中文字幕日韩| 91在线视频免费播放| 免费欧美一区二区三区四区| 欧美精品 在线一区二区| 国产欧美日韩免费精品| www成人的在线视频| www.日本在线视频观看| 欧美 色亚洲一区| 韩国一区二区三区黄色录像| 国产精品美女久久久久∧v爽| 女性久久久久国产精品毛片 | 国产精品久久久久网站| 亚洲欧美日本国产一区| 中文字幕成人精品久久不卡| 日本中文字幕黄色影院| 国产欧美在线观看精品一区污| 久久精品久久国产| 国产人成精品午夜在线观看| 国产欧美在线观看精品一区污 | av不卡网站在线下载免费观看| 久久人综合中文字幕色婷婷| 国产成人精品免高潮在线观看 | 久久99精品久久久久婷| 激情视频一区二区三区在线观看| 国产精品麻豆久久久麻豆| 国产成人精品免费午夜APP| 亚洲电影欧美电影一区二区| 免费播放毛片视频| 欧美一区二区伦理在线| 亚洲成人久久综合网| 亚洲成人免费播放免费播放| 狠狠爱五月天久久综合| 亚洲一卡二卡在线免费观看| 亚洲第一第二区精品| 国产午夜福利精品久久2021| 久久久久黄色精品免费看| 黄片视频在线观看亚洲人| 91久久精品日日躁夜夜躁91| 麻豆国产一区二区三| 伊人激情精品电影第一页| 欧洲三级久久久精品| 精品人妻中文字幕色站| 日韩亚洲欧美午夜| 制服丝袜av无码专区完整版| 精品四虎免费观看国产高清| 蜜臀av国产精品一区二区| 精品最新av在线播放| 国产精品91在线| 日本美女久久一区二区| 99久久精品视频毛片| 午夜性色福利影院| 中文字幕亚洲国产有码| 久久久久久久国产av| 日本人妻精品视频| 精品一区少妇视频| 国产精品高潮呻吟久久久久久| www视频在线观看| 国产首页亚洲精品第一页| 精品久久无套内射| 美女一区二区三区在线视频| 人妻精品视频在线| 国产精品又黄又粗视频| xxxx国产精品视频| 国产精品123区| 日本一区二区三区日本视频| 日韩中文乱码字幕| 清纯唯美中文字幕国产| 老熟女乱淫视频一区二区| 麻豆午夜激情视频| 亚洲jizzjizz在线播放久| 久久精品国产99久久无毒不卡| 精品视频美女久久久中文字幕| 黑人精品xxx一区二区三区| 色嫒精品一区二区三区| 丝袜制服国产精品一区二区| 2021最新国产精品网站| 亚洲精品在线视频第二页| 国产欧美手机在线观看| 色哟哟哟—国产精品| 欧美不卡在线免费视频| 欧美日韩国产一区夜夜| 制服丝袜 在线 亚洲| 黄站午夜福利观看| 99热精品在线观看白浆| 视频一区二区三区偷窥自拍| 茄子视频国产精品| 国产av一区二区三区五区| 欧美啪啪婷婷一区| 亚洲美女高潮久久久久久久| 久久99精品在线观看| 老司机精品午夜视频在线| 国内在线视频网站在线观看免费| 美日韩在线调教变态av| 九九视频在线观看6伊人| 精品国产呻吟久久av| 欧美美女一区二区免费| 最好看的中文字幕一区| 98超碰人人与人人欧美| 欧美日韩在线亚洲一区蜜芽| 日本人妻精品视频| 综合久久五十路熟女| 日韩专区一区二区在线观看| 午夜一级毛片亚洲欧洲天堂| 91午夜精品福利在线亚洲| 日本一区不卡高清更新区| 蜜桃视频在线观看免费| 日韩精品 视频二区| 中文字幕在线观看视频第一页| 粉嫩极品国产在线2020| 免费毛片在线观看视频一区二区 | 免费人成黄页在线观看69| 正在播放老肥熟妇露脸| 日韩欧美网站在线观看视频| 日本二区在线观看| 亚洲日本午夜一区二区| 欧美 亚洲,视频一区| 国产精品国产免费看| 国产网红主播av国内精品| 中文字幕日韩一级| 美女黄网站久久久久| 久久久一级精品黄色片| 青青久久精品国产| 国产精品综合色区在线观看不 | 日韩av大全在线播放| 观看中文字幕日韩三级av| 在线免费观看av不卡| 国产视频精品一区精品二区| 日韩免费高清视频在线播放| 亚洲一区精品成人| 91原创精品视频在线观看| 精彩视频在线观看一区二区| 精品啪啪视频一区二区三区| 成人av网站一区二区三区| 国产精品电影久久久久电影网| 日韩欧美一区二区在线观看| 免费在线看黄国产精品| 最近中文免费一区二区三| 中文字幕av免费专区资源| 人人爽人人爱欧美一区国产二区| 日本在线观看视频不卡一区| 久久精品免费人妻| 伊人久久大香线蕉aⅴ色| 在线一区二区三区高清视频| 日韩 亚洲 欧美 91| 国产午夜精品一区二区三区欧美 | 国产精品久久久久久码AV| 国产成人精品91| 国产成人av片在线| 国产欧美在线视频二区三区| 92福利在线播放无毒不卡| 国产成人av在线播放| 国产你懂的网址中文字幕| 国产精品网在线观看| 久久成人大片网站| 日本在线观看视频不卡一区| 字幕中文日韩欧美| 亚洲电影欧美电影一区二区| 69av在线视频| 亚洲精品天堂日韩| 久久av一区二区三区软件| 91青青草原在人线免费| 欧美一区二区成人片国产精品| 噜噜噜久久亚洲精品 | 亚洲成人色电影在线观看| 尤物在线国产精品| 中文官网天堂在线看| 影视一区二区三区| 国产伊人精品99| 国产精品一区二区三区日日夜夜| 日本欧美一区二区三区视频麻豆| 国产精品一级片在线观看| 久久久999中文字幕| 中文字幕日韩第一精品| 亚洲一区二区电影在线| 人妻熟女一区二区aⅴ| 国产成人精品日本亚洲网站伊| 欧美午夜福利在线点播视频| 国产一级片免费观看| 性感美女污污福利网站在线看| 国产精品久久一二三区| 狠狠爱五月天久久综合| 精品久久久久久国产中文| 亚洲精品视频导航| 伊人色在线综合网| 在线亚洲天堂色播av电影| 福利免费视频观看| 久久久国产日韩一区二区三区| 欧美视频中文字幕| 亚洲中文字幕永码永久在线| 九一精品一区二区三区| 日韩精品久久网站免费看| 激情视频一区二区三区在线观看| 日本二区三区视频网站| 久久国产精品免费一区六九堂 | 麻豆影院 一区二区三区| 亚洲精品区中文字幕| 亚洲永久欧美精品| 国产探花在线精品一区二区| 最新国产拍偷乱偷精品| 精品久久久久久综合网| 亚洲精品欧美一区二区| 综合av电影不卡在线观看| 东方av免费观看久久av| 欧美不卡视频在线观看| 精品久久久久久人妻无| 中文字幕免费精品| 国产精品国产精品国不卡懂色| 精品亚洲永久免费午夜不卡| 一区二区三区久久久影视| 美女少妇喷水久久一区二区| 四虎在线中文字幕一区二区 | 亚洲一区二区在线观看中文字幕 | 日韩在线二区三区免费| 免费观看国产大片黄| 国产91精品高跟丝袜在线欧美| 亚洲超碰中文字幕在线| 这里只有在线精品视频免费观看| 欧美性少妇xxxx极品高清hd| 新国产精品视频福利免费| 精品视频中文字幕在线| 中文字幕第5页在线视频| 天天路综合网中文字幕在线观看| 午夜久久久久久亚洲欧美| 日韩欧美综合一区| 国内精品久久久久久久| 亚国产成人精品久久久国产| 国产国产一区二区三区| 国产成人欧美日本电影在线观看| 欧美日韩国产在线人成网站| 亚洲国产精品欧美久久| 国产熟女激情高潮嗷嗷叫| 在线观看视频一区二区精品| 一区二区三区福利| 久久东京热日韩精品一区| 国产欧美手机在线观看| 美女丝袜在线观看一区二区 | 一区二区三区国产精品杏吧| 日本免费啪视频在线观看| 最新午夜毛片视频| 粉嫩白浆国产精品| 免费看毛片的网站在线不卡顿| 久久九九亚洲精品免费视频| 亚洲欧美香蕉在线日韩精选| 高清蜜桃久久久av| 亚洲 欧美 在线 不卡| 日韩成人在线观看视频| 人妻少妇偷人精品视频一区二区 | 日韩欧美大片免费观看网站| 国产成人三级视频| 91久久精品日日躁夜夜躁91| 综合欧美五月婷婷| 亚洲伦理偷拍欧美,另类,色图| 日本中文字幕不卡| 国产成人精品午夜在线观看| 亚洲一区二区三区片| 久久99精品国产99久久| 成人h视频一区二区| 国产亚洲美女精品久久久久| 一区在线不卡av 在线不卡av一区| 福利视频一区二区入口| 这里只有精品视频免费在线观看| 日韩涩涩一区二区三区| www.久久久久久久久| 在线日本中文字幕网| 国产伊人精品99| 午夜福利在线观看h蜜臀| 国产美女高潮一区二区三区| 欧美日韩国产电影中文字幕| 亚洲熟妇av乱码在线看| 亚洲国产黄片在线免费观看| 拍拍国产电影天堂| 中文字幕av日韩一区| www.国产精品毛片| 日本免费一区二区视频网站| 久久久亚洲一区二区影视| 亚洲精品国产免费久久| 欧美野外中文字幕第一页| 国产一区二区这里只有精品| 欧美黄色三级在线不卡| 91av国产精品| 国产午夜精品一区二区三区欧美| 免费网站日本a级淫片免费看| 全黄久久久久a级全毛片 | 字幕乱码日韩在线观看| 欧美一区不卡在线| 污亚洲一区网站在线观看| 亚洲av网站在线播放| 久久久久久久久久久福利| 黄站午夜福利观看| xxxxwww69| 国产模特在线一区二区| 精品亚洲女同一区二区| 国产日本欧美在线看| 国产精品久久一二三区| 国产精品视频 在线观看| 91久久久色在线观看| 亚洲最新人妻在线| www.久久精品| 偷国产乱人伦偷精品视频香蕉| 亚洲欧美国产中文日韩| 91久久精品福利| 毛片无遮挡高潮免费| 男人的天堂在线视频99999| 精品亚洲国产成av人片传媒| 亚洲国产黄片一区二区| 最新中文字幕一区视频| 鲁啊鲁啊鲁在线视频播放| 国产成人久久精品蜜臀| 在线不卡不卡一区二区| 国产av美女被人操| 99最新亚洲人妻在线电影| 老头亚洲黄色中文字幕| 男人的天堂在线视频99999| 老熟女精品视频12区| 精品国产18禁久久久久久| 黄色电影在线免费看| 国产女女同无遮挡互慰| 日本少妇高潮久久久久久久久 | 一区二区三区无码高清视频| 亚洲男女午夜福利在线观看 | 动漫精品专区一区二区三区| 日韩亚洲av日韩乱码| 国产香蕉97久久精品| 青青一区二区三区91| av第一区第二区第三区av| 中文字幕人妻丝袜系列| 国产精品免费爽爽爽| 最新久久悠悠一区二区| 国产精品夜色久一区二区三区| 成人婷婷综合天堂| 亚洲高清视频在线观看一区二区| 中文字幕亚洲国产一区| 国产精品欧美视频在线| 国产精品午夜免费观看| 国产成人一区二怕在线观看| av天堂亚洲国产aⅴ| 99久久精品免费国产视频| 91在线播放国产精品| 日本 亚洲 黄色 免费| 观看亚洲免费视频网站大全| 熟女少妇中文自拍欧美亚洲激情| 久久久999国产精品视频| 欧美日韩在线一区不卡| 欧美精品福利一区二区| 亚洲欧洲中文日韩a乱码| av不卡网站在线下载免费观看| 偷窥少妇久久久久久久久| 日韩毛片视频在线| 亚洲最新人妻在线| 国产精品,视频一区,久久久| 中文字幕一区不卡在线观看的| 欧洲二区在线观看| 国产精品悠悠久久| 国产欧美日韩视频| 美女视频黄在线观看| 国产 日韩 欧美三级| 国产三级黄在线视频| 欧美综合不卡顿视频在线观看| 午夜视频国际在线观看不卡| 亚欧日韩毛片在线看免费网站 | 91黄色成人网站网址在线观看 | 日韩亚洲av日韩乱码| 蜜桃在线精品一区| 国产女同性恋一区二区av| 2022国产精品福利在线观看| 亚洲精品中文字幕制服诱惑| 国产av一区二区三区五区| 日韩av电影在线不卡观看| 亚洲黄色美女免费网站| 色综久久久久综合欧美| 在线视频欧美亚洲| 欧美日本一道免费一区三区| 色综久久久久综合欧美| 国内网友自拍视频在线免费观看| 你懂的国产精品电影在线观看| 国产在线一区二区你懂的| 少妇性色一区av 国产午夜精品不卡在线观看 | 国产成人三级视频| 国产日韩欧美久久| 欧美精品1区2区| 色欲av亚洲一区无码少妇| 日韩欧美另类片在线观看| 一个人看的亚洲国产av| 五月天婷婷缴情五月免费观看| 亚洲图片小说激情综合| 欧美一区二区三区放荡老妇| 亚洲欧美成人性小说| 国产一区二区啊啊啊在线观看| 国产欧美自拍他拍在线观看| 国产 日韩 欧美 精品 另类| 99热这里只有精品免费在线| 一区二区午夜在线| 中文字幕第一页在线免费观看| 日本美女三级视频网站| 精品日韩国产欧美在线| 中文精品久久久久人妻| 在线一区二区三区亚洲| 亚洲欧洲国产综合专区www| 国产精品午夜福利一区| 亚洲视频在线不卡| 欧洲va亚洲va在线观看| 日韩免费高清视频在线播放| 欧美在线中文字幕不卡| 国产高清在线视频一区二区三区| 亚洲一区三区在线播放| 国国产精品蜜臀av免费| 成人性色生活片全黄| 桃花社区视频在线观看完整版| 这里只有精品视频免费在线观看| 国产mv在线免费观看| 亚洲精品久久久日韩美女极品| 中文字幕对少妇高潮| 中文字幕免费视频不卡二区| 岛国毛片视频网站免费| 2017天天干夜夜操| 欧美一区二区三区视频区| 久久久精品国产sm一区二区| n满人妻精品一二区| 日韩国产亚洲视频在线观看| 欧美日韩黄片在线免费看| 天天去色综合久久婷婷| 久久夜色精品国产卜| 中文字幕日韩二区| 日韩 亚洲 欧美 91| 久久中文字幕伊人小说小说| 欧美亚洲精品日韩精品| 亚洲av综合一区在线| 国产区中文字幕在线| jizz内谢中国亚洲jizz| 色哟哟哟—国产精品| 中文字幕在线观看国产| 麻豆国产一区二区三| 人妻中出中午字幕一区| 久久久免费精品电影| 亚洲一二三区在线播放| 亚洲国产av一区二区污污污| 在线观看99精品视频| 国产福利一区二区三区四区五区| 日本在线观看精品视频| 久久久国产日韩一区二区三区| 午夜久久福利天堂av| 日韩欧美视频在线观看网站| 视频一区二区三区偷窥自拍| 91亚洲日本aⅴ精品一区二区| 亚洲av制服丝袜在线| 在线观看成人免费高清| 国产乱码一区二区视频| 久久国产精品久久99| 爱爱免费视频96xx久久| JULIA手机在线观看精品 国产福利精品av综合导导航 | 午夜av在线影院 国产精品免费看av| 欧美99久久精品乱码影视| 亚洲国产欧美在线观看片不卡| 狠狠躁夜夜躁人人爽天天高潮| 91精品国产人妻国产毛片| 亚洲不卡一级电影观看| 日韩欧美制服人妻中文字幕| 美女网站尤物在线观看 | 欧美啪啪婷婷一区| 精彩视频在线观看一区二区| 免费毛片在线观看视频一区二区| 噜噜噜久久亚洲精品 | 国产精品网站的黄色| 国产精品免费视频网站| 中文字幕在线观看你懂的| 日韩午夜理论在线观看1000| 精品一区二区在线观看网站| 日本一区两区三区不卡视频| 国产精品久久久久久久嫩草影视| 婷婷中文久久字幕| 欧美日韩国产电影中文字幕| 人人做天天爱夜夜| 茄子在线资源在线观看视频 | 91麻豆精品91久久| 亚洲人人夜夜澡人人爽| 日韩美女精品黄片| 国产精品麻豆久久| 亚洲国产免费不卡| 美女毛片在线免费观看| 日本在线观看精品视频| 亚洲最大欧美日韩色| 国产精品四虎影视| 亚洲av网站在线免费| 手机av免费在线观看| 欧美人妻 自拍 第一页| 在线观看永久中文字幕| 中文字幕第5页在线视频| 多毛丰满日本熟妇| 欧洲美一区二区三区亚洲| 亚洲精品欧洲精品久久| 午夜桃色国产精品| 亚洲精品在线视频第二页| 欧美视频一区二区三区四区| 国产精品最新乱视频二区| 国产欧美日韩一区二区三区| 99久久国产综合色| 日韩欧美制服人妻中文字幕| 在线观看日本一区不卡视频| 亚洲欧美自拍另类图片| 亚洲成av片一区二区久| 欧美一区二区人视频| 亚洲最大中文字幕永久网址| 18欧美一区在线观看| 国产麻豆一区在线| 中文字幕免费三级| 在线播放免费观看不卡91| 欧美日韩香蕉视频| 中国福利视频一区二区| 一区二区三区在线观看国产最新| 人妻熟女一区二区aⅴ| 亚洲欧美日韩一区天堂| 在线观看欧美人成| 欧美精品一区二区精品久久| 亚洲视频免费在线观看第一页| 男人的天堂 亚洲av| 欧美日韩在线观看一区| 亚洲黄片一区二区| 日韩性片一区二区在线观看| 国产精品污一区二区三区| 日本aⅴ一二区在线观看| 免费网站一区二区三区| 黄色的视频一区二区三区| 2022国产精品福利在线观看| 国产成人三级视频| 精品国产手机一二三区| 日韩一区二区三区 不卡AV| 99r视频这里只有精品| 九九热视频/这里只有精品| 天堂资源在线观看亚洲av | 国产一区精品免费观看| 日韩欧美美女高清在线不卡| 国产三级在线视频 一区二区三区| 欧美va亚洲va在线观看| 3751影院色婷婷一区二区| 在线观看免费av大全| 黄色中文字幕在线网站| 美女午夜不卡视频在线观看视频| 最新日韩精品在线免费观看| 中文字幕 欧美一区| 欧美人在线观看免费高| 2020av男人亚洲天堂| 亚洲精品乱码久久久久蜜桃小说| 艹少妇视频在线免费观看| 国产免费av网站入口| 亚洲永久免费中文字幕在线播放 | 日韩欧美精品中文字幕| 欧美中文日本在线观看视频| 91人妻人人爽人人狠| 丁香婷婷综合精品六月初| 国产一区自拍视频免费在线观看| 免费人成视频在线观看网址| 日韩中文精品视频| 亚洲国产欧美视频在线看| 成a人片亚洲日本久久| 亚洲国产综合尤物| 日韩 高清 经典 中文| 免费观看黄色美女网站| 丝瓜视频在线免费观看| av黄色免费手机在线播放网址| 亚洲欧美国产剧情| 亚洲黄片一区二区| 国产视频精品一区精品二区| 久久久久99精品| 国产精品久久一二三区| 亚洲最大中文字幕永久网址| a一区二区三区日本电影| 久久伊人不卡了精品酒店| 麻豆文化在线观看一区二区| 国产区中文字幕在线| a∨色狠狠一区二区三区| 日本黄色视频一区,二区| 欧美一级大黄大色毛片视频| 国产精品久久久久久久久久影院| 国产老女人精品一区二区三区| 久久偷看各类wc女厕嘘嘘| 欧美一区精品中文字幕| 人妻精品视频在线| 欧美一区二区三区不卡在线播放| 国产精品久久久久久久久电影网| 国产中文字幕在线视频一区| 国产最新在线观看网站| 国产成人小视频在线观看| 亚洲国产欧美日韩一级| 日本亚洲中文字幕在线| 日韩 精品 综合 丝袜 制服| 久久久精品日韩精品| 欧美日韩亚洲后入| 在线中文字幕日韩在线| 亚洲国产精品特色大片观看完整版| 国产原创在线视频| 日韩熟女视频精品| 精品久久久久久久国产| 亚洲成人久久综合网| 99九九精品视频| 国产av一区二区三区| 欧美乱强伦xxxxx高潮| 哦美激情中文字幕亚洲| 婷婷六月久久综合丁香中文| 欧美 色亚洲一区| 国产成人精品91| 日本人妻欧美视频| 中文字幕亚洲免费观看| 黄色永久网站在线免费观看| 韩国三级国产精品一区| 欧美日本综合看片国产| 久久婷婷综合缴情亚洲狠狠| 天堂欧美城网站网址| 午夜欧美在线视频| 欧美成人免费在线一线播放| 久久国产精品不卡77777 一级做a免费视频观看网站 | 欧美亚洲精品国产1区2区| 欧美日韩国产精品系列区| 国产91在线播放9色不卡| 中文高清在线不卡一区二区| 国产白丝袜美女久久久久久久久| 丝袜制服国产精品一区二区| 欧美精品一区二区自拍中文主播| 欧美亚洲日本综合精品在线| 久久人综合中文字幕色婷婷| 亚洲国产免费不卡| 久久精品夜夜夜夜久久| 欧美日本最新在线一区视频| 不卡av二区在线 不卡的av在线一区| 国产午夜在线观看| 亚洲一区二区色女视频| 欧美人与性动交另类| 亚洲女人的天堂在线观看| 亚洲人人爽从人人澡起碰av| 日韩视频在线播放一区| 不卡中文字幕永久999| 午夜免费在线高清观看av| 中文字幕高清在线播放第一页| 国产亚洲中文字幕成人| 日韩 高清 经典 中文| 外国一区2区黄色片| 国产午夜福利精品久久2021| 日韩精品久久男女人妻| 亚洲av香蕉色一区二区三区| 东京热久久只有精品6| 欧美啪啪婷婷一区| 免费高清在线毛片| 久久精品国产亚洲v神秘四虎| 国产精品第一区第二区第三区| 亚洲国产一区二区三| 亚洲天堂av另类在线播放| 精品久久久久久字幕人妻| 岛国免费一区二区三区| 尤物九九久久国产精品的分类| 午夜在线亚洲精品福利| 亚洲天码中文字幕在线观看| 秋霞av鲁丝一区二区三区| 一区二区三区精品国产欧美| 2020国产在线| av网址大全在线观看中文字幕| 正在播放老肥熟妇露脸| 直接播放日本高清视频在线网站| 欧美精品九九99久久在观看| 国产专区 日韩精品| 日韩不卡中文在线视频网站| 俺也色亚洲色图中文字幕| 99久久国产综合色| 亚洲国产精品免费线观看视| 视频 福利 在线 午夜| 欧洲日韩中文在线| 日本一区二区三区四区国产| 国产成人av在线网站网址| 欧美精品产品在线观看| 国产精品福利资源导航| www.久久成人| 亚洲国产成人在线观看免费| 日韩亚洲欧美亚洲天堂| 最新日韩精品在线免费观看| √天堂中文www官网在线| 日韩精品久久男女人妻| 免费人成视频在线观看网站| 欧洲精品一区在线观看视频| 亚洲一区在线视频在线播放| 中文字幕精品日韩综合| 午夜福利在线精品一品二区 | 亚洲五月天精品久久| 日韩熟妇丰满人妻| 国产精品片三区乱淫人成人| 久久婷婷五月综合色精品首页| 国产精品一区二区xxxx| 国语自产偷拍精品视频蜜芽| 中文字幕超清在线免费观看| 亚洲精品中文字幕在线安v| 国产精品久久免费一区dyd| 秋霞午夜成人鲁丝片午夜精品| 亚洲欧洲中文字幕在线 | 欧美黄片在线免费直播观看视频 | 91精品国自在自线免费观看| 一区二区三区不卡乱码| 日本一本不卡在线观看| 欧美日韩亚洲另类自拍| 久久精品一级黄片| 色综合欧美在线视频区| 免费久久久中文字幕观看视频| 蜜桃人妻一区二区| 成人粉嫩av一区二区| 欧美日韩国产精品美女服务网站| 人妻少妇久久久久久久| 伦理av在线一区二区| 亚州中文字幕久久| 亚洲国产精品欧美久久| 成人免费看黄yyy456| 一级做a爱片久久a| 少妇人妻综合久久中文字幕蜜| 中文字幕 欧美激情露出| 欧美中文字幕6666| 最新亚洲人妻系列| 久久成人欧美日韩| 琪琪 在线视频一区二区三区| 久久精品店一区二区三区| 欧美日韩免费一区| 日韩精品成人中文字幕| 少妇久久一区二区| 美女网站黄是免费看| 国产区中文字幕在线| 国产午夜精品一区二区三区欧美| 999久久精品人妻| 最新的亚洲不卡的一区在线| 久久精精品久久噜噜| 香蕉视频一区二区免费看| 日韩欧美制服人妻中文字幕| 亚洲福利精品网站| 国产乱淫aⅴ一区二区三区| 999久久精品人妻| 久久国产精品一国产精品金尊| 久久精品99久久香蕉欧美| 亚洲视频在线不卡| 国产h精品在线观看| 亚洲激情视频在线观看不卡一二 | 日韩欧美亚洲综合首页| 精品美女极品美女在线观看网站| a级港片免费完整在线观看| 亚洲日本精品一级| 欧美激情一区自拍| 中文字幕资源欧美| 国产91av视频在线观看| 国产一区二区三区xxxx久久| 亚洲欧美日本国产一区| 国产乱国产乱300精品| 亚洲福利 中文字幕| 亚洲永久黄网站在线在线播放| 国产一区亚洲二区三区毛片| 一本色道久久综合亚洲精品高| 最新网址在线观看一区二区| 国产成人v爽在线免播放观看| 亚洲精品www久久久久久下| 亚洲色图精品一区二区三区| 成人免费在线观看网站| 亚洲精品日韩综合观看成人91| 99视频在线视频观看精品| 亚洲av三区在线播放| 宅男噜噜66国产精品观看| 日韩影院成人精品| 青青草精品视频在线播放 | 国产精品免费视频网站| 一区中文字幕久久| 国产成人精品免高潮在线观看| 国产超碰人人做人人爱va九月| 欧美 色亚洲一区| 亚洲 综合 欧美在线| 手机在线不卡一区二区免费视频 | 欧美成熟美女在线不卡电影| 偷偷人人精品女久久| 在线观看亚洲专区一二区| 午夜久久久久久久| 国产福利视频免费在线观看 | 国产成人aⅴ在线免播放观看| 日韩二区三区少妇| 91理论片午午伦夜理片久久| 91欧美日韩国产在线| 久久国产精品不卡77777 一级做a免费视频观看网站| 亚洲一区二区三区 视频| 欧美福利一区二区三区| 日本又粗又猛又爽又黄的视频| 熟女少妇中文字幕| 伊人久久狠狠综合| 偷偷人人精品女久久| 骚货av一区二区 麻豆伊人一区二区| 日韩欧美网站在线观看视频| 久久精品94久久精品不卡| 五月天堂久久综合| 成人午夜影院网址| 亚洲国产精品视频一二三区 | 国产精品91在线| 99国产成人免费视频| 日本一区二区三区日本视频| 亚洲精品欧美一区二区| 欧美人妻日韩一区二区三区| 精品久久久久久久人妻换| 亚洲av网站在线观看网站| 日本中文字幕综合久久| 欧美日韩在线观看一区| 国产一级二级三级在线| 中文字幕网站久久| 久久偷看各类wc女厕嘘嘘| n满人妻精品一二区| 日韩三级另类视频| 精品人妻久久久久久久久久久久| 亚洲最大的天堂av网站| www.在线视频中文字幕| 亚洲国产日韩视频在线观看| 一区二区三区在线视频蜜臀| 精品乱码一区二区三区不卡视频 | 国产一区二区精品一区| 精品久久久久久久久久不卡| 亚洲国产精品女主播| 亚洲视频久久一区二区三区| av成人一区二区三区| 午夜桃色国产精品| 国产精品久久久久久久模特人妻| 天天路综合网中文字幕在线观看| 亚洲三级成人在线观看| 桃花社区视频在线观看完整版| 国产黄色一级免费观看| 久久婷人人爽人人澡精品| 精品一级一片国语内射视频播放 | 亚洲最大免费av在线播放 | 日韩欧美另类片在线观看| 亚洲欧洲日本在线观看视频| 色狠狠一区二区三区熟| APP在线免费观看视频| 欧美日韩国产精品美女服务网站| 国产亚洲自愉自愉| 精品一区二区大香蕉视频偷拍| 国产精品一区二区三区免费视频| 成人午夜淫片免费在线观看| av在线播放不卡一区| 亚洲在av极品无码| 日本黄色视频不卡一区二区| 日韩av中文字幕第一| 欧美人与牲禽动交精品一区| 成年人视频在线观看网站| 久久亚洲国产毛片| 91精品国产麻豆国产自产在线 | 亚洲精品三区在线观看免费| 五月天堂久久综合| 视频一区 视频二区 在线| 视频一区二区三区资源| 国产一区精品免费观看| 欧美野外中文字幕第一页| n满人妻精品一二区| 999九九九精品视频在线观看| 字幕中文日韩欧美| 亚洲精品国产精品国自产在线| 亚洲一二三区在线播放| 性日韩xx一区二区在线| 制服丝袜 在线 亚洲| 欧美亚洲日本综合精品在线| 色嫒精品一区二区三区| 亚洲特级黄片久久久| 大香大焦伊人中文字幕五月天| 亚洲激情视频在线观看不卡一二| 中文字幕日产乱码欧美| 2017天天干夜夜操| 激情欧美日韩亚洲| 久久精品一中文字幕!| 中文字幕 欧美一区| 久久国产精品秦先生| 欧美一区二区三区四高清视频| 2021最新国产精品网站| 午夜视频一区在线| 人妻乱人伦中文在线| 亚洲av中文有码在线| 视频一区二区三区不卡| 成人一区二区毛片| 欧美黄片在线免费直播观看视频| 精品亚洲不卡一区二区三区四区 | 草草影院ccyy| 免费看毛片的网站在线不卡顿| 亚洲欧洲日本在线观看视频| 日韩三级另类视频| 日韩欧美美女高清在线不卡| 国产成人精品电影在线播放| 亚洲最大欧美日韩色| 国产午夜精品乱码人妻老太太| 91精品门事件在线观看| 97国产精品国产品国语字幕| 激情图片区一区二区三区| 欧美va一级在线观看| 亚洲精品成人在线免费| 欧美成人aaaaaaaa免费| 亚洲国产精品999| 日韩免费网站久久| 国产白嫩白浆无套内射在线观看| 久久综合国产精品| 国产精品久久久一区二区视频| 你懂的国产精品永久在线| 中文字幕无线码一区二区三区| 日韩丝袜中文字幕在线| 久久精品99久久香蕉欧美| 日本精品高清在线视频| 大香蕉黄片精品在线| 久久午夜精品免费看| h片在线观看精品一区| 91精品亚洲视频在线观看| 久久午夜精品一级| 色综久久久久综合欧美| 韩国一级片久久精品| 成人在线视频观看日韩| 一区二区久久久免费| 香蕉视频美女性久久| 亚洲不卡大片在线观看视频| 国产亚洲在线精品视频| 欧美人成国产91| 视频一区二区三区麻豆| 亚洲一卡二卡三卡在看| 日韩精品美女福利视频| 国产福利小视频免费在线观看| 国产精品久久久一区二区视频| 久久婷婷久久一区二区三区| 宅男噜噜66国产精品观看| 91精品一区二区三区在线观看| 国产精品美女视频一区二区三区| 日韩av大全在线播放| 观看中文字幕日韩三级av| 欧美诱惑在线观看视频一区| 蜜臀久久精品久久久久打不开| 精品视频精品91美女视频| 一区二区九亚洲观看三区不卡女| 中文字幕一区二区在线不卡视频| 亚洲国产成人精品女人久久…| 在线观看国产精品三级| 香蕉视频一区二区免费看| 69国产盗摄一区二区三区五区| 亚洲成人日韩国产欧美| 91在线二区三区| 熟女少妇中文字幕| 日本视频在线观看精品| 日韩欧美素人制服中文| 国产亚洲精品123| 日韩毛片高清免费观看| 欧美日韩国产不卡在线观看| 中文高清在线中文字幕日韩| av在线中文字幕天堂| 成年午夜视频国产不卡播放源| 久久蜜臀亚洲一区二区| 可以免费观看的亚洲av| 色婷婷久久综合中文久久 | 久久久久成人免费一区二区| 日韩风情中文字幕| 免费的欧美一区二区| 国产丝袜美女一区二区三区| 国产又粗又猛又大的视频| 国产成人强伦免费视频网站| 日本精品电影一区二区| 亚洲欧美一区国产精品| 久久综合亚洲国产精品| 日韩a√中文字幕在线| 国产精品四虎影视| 亚洲五月天精品久久| 久久亚洲国产中文| 国产午夜福利在线观看播放| 亚洲视频久久一区二区三区| 手机看久久精品片| 黑人精品xxx一区二区三区| 91午夜精品福利视频| 正在播放老肥熟妇露脸| 国产色视频一区二区在线观看| 在线麻豆一区国产| 午夜久久久久久亚洲欧美| 欧美性淫爽ww久久久久无| 国产亚洲自愉自愉| 日韩欧美中文三级| 91青青草原在人线免费| 午夜免费成人福利视频| 成人 在线 日韩 欧美| 巨大黑人极品VIDEOS精品| 老司机精品午夜视频在线| 成人性色生活片全黄| av在线不卡中文字幕电影| 亚洲精品福利视频网站| 91在线视频免费播放| 新搬来的女邻居麻豆av评分| 亚洲黄色大片免费的观看| 欧美日韩免费一级黄片| 欧美成人高清免费在线观看| 免费乱理伦片奇优影院| 亚洲综合另类专区在线| 日韩.欧美.国产.无需播放器| 69堂国产成人精品网址| 亚洲色图在线不卡激情视频| 亚洲另类自拍欧美| 久久中文字幕福利| 丰满人妻熟妇乱又伦精品视频三| 人妻体内一区二区三区| 亚洲av乱码久久精蜜桃av| 亚洲精品乱码久久久久蜜桃小说| 欧美精品成人a多人在线观看| 国产成人啪免费视频| 最新日韩中文字幕在线播放| 国产成人av高清在线观看| 日本在线激情免费播放刺激不卡| 中文字幕在线视频观看网站| 18禁黄国产精品一区二区白浆 | 色人综合在线视频| 粉嫩av夜夜澡人人爽人人| 色狠狠一区二区三区熟| 亚洲大片在线免费看| 性视频网站在线亚洲区四虎 | 丝瓜视频在线免费观看| 国产XXX69麻豆国语对白 亚洲国产福利| 亚洲精品福利视频| 精品视频一区少妇| 欧美va一级在线观看| 午夜av在线影院 国产精品免费看av| 久久这里只有精彩视频香蕉| 午夜一级毛片亚洲欧洲天堂| 麻豆国产精品v在线观看| 日韩欧美国产制服在线| 亚洲精品区中文字幕| www.一区二区少妇| 在线观看亚洲国产一区二区三区| 美女拍拍拍免费视频观看| 欧美久久久精品中文字幕| 在线观看免费av大全| 88久久精品国产欧美一区二区| 日本少妇熟女二区三区| 亚洲欧美极品美女| 久久精品国产99久久无毒不卡| 日韩av电影中文字幕不卡 | 国产精品高潮久久久久久养生馆| 99国产三级精品三级在线专区 | 这里只有精品视频免费在线观看| 久久久久成人免费看a国产| 最新亚洲人妻系列| 国语自产偷拍精品视频蜜芽| 国产成人精品亚洲 91| 精品熟女久久久久浪| 在线天堂中文www官网| 亚洲乱色国产精品| 久久国产精品老熟女| 99最新亚洲人妻在线电影| 欧美日韩91九色| 国产日韩欧美久久| √最新版天堂资源网在线下载 | 欧美一卡二卡一国产免费| 91精品一区二区三区在线观看| 午夜久久黄色视频| 亚洲成人三级在线观看| 最新日韩精品久久久| 在线播放人妻中文字幕| 伊人依成久久人综合网| 精品国精品国产自在| 中文字幕一区不卡在线观看的| 国产精品私拍在线| 亚洲动漫一区二区 激情小说 | 宅福利国产欧美亚洲| 国产白丝一区二区三区| 欧美人成视频免费看| 婷婷中文久久字幕| 国产69精品久久久久久久久久| 7777亚洲成视频免费观看| 又粗又黄又爽免费视频| 中文字幕一区二区三区精品| 亚洲欧美日韩一区天堂| 999九九九精品视频在线观看| 一个人免费午夜福利| 久久66热re国产毛片基地| 国产suv精品一区二区四五| 影视一区二区三区| 国产精品一品久久| 91欧美一区二区三区蜜臀| 日本精品人妻久久久| 91人妻人人爽人人精品| 精品欧美乱码久久久久久一区| 日产中文字幕一码| 国产三级在线视频 一区二区三区| 久久亚洲激情五月天| 中文字幕日韩第一精品| 亚洲欧美中文日韩综合| 色妹子久久精品视频| 动漫av纯肉无码av电影网| 久久久精品美女mm久久久| 在线你懂的精品日韩在线| 国产无遮挡刺激视频| 国产h精品在线观看| 精品乱码中文一区二区三区| 亚洲伊人久久大香线蕉影院| 亚洲欧美日韩久久一区| 好吊视频一区二区三区四区| 最新久久悠悠一区二区| 国产精品综合色区av| 韩国精品在线观看| 136fldh导航福利微拍| 午夜理论欧美理论片| 欧美不卡视频在线观看| 2023小小精品女教师日韩精品亚洲人成在线播放 | 国产精品美脚玉足脚交欧美图片| 爱啪啪国产精品一区二区视频| 亚洲乱亚洲乱妇41p国产成人| 欧美激情视频精品一区二区| 日韩精品免费视频播放| 欧美日韩国产精品美女服务网站 | 免费久久久中文字幕观看视频| 欧美精品日日鲁夜夜添| 日韩在线视频手机| 精品国产福利电影| 精品人妻伦九区久久片| 久久66热re国产毛片基地| 日韩高清在线观看不卡一区二区| 亚洲av手机版久久精品| 欧美高清一二三区| 国产原创久久中文字幕| 国产欧美手机在线观看| www.成人a视频在线观看| 蜜桃在线精品一区| 欧美日韩免费一级黄片| 亚洲天堂av另类在线播放| av天堂资源总部在线观看| 国产特级毛片aaaaaa| 久久亚洲色www成人| 日韩欧美精品一区二区三区经典| 国产 欧美精品 字幕| 中文字幕 欧美一区| 手机福利看片永久免费| 国产精品久久久久久久成人午夜 | 日本韩国中文字幕不卡首页| 99热这里只有精品免费在线| 成年人黄片免费在线播放| 亚洲v成人www新版精品久久| 在线观看国产高清免费不卡色| 欧美99久久精品乱码影视| 成人在线观看亚洲第一视频| 看国产日韩av免费| 亚洲视频欧洲视频在线观看| 成年人午夜福利av| 国产精品免费手机在线网站| 中文字幕日韩观看| 青青久久婷婷七月| 99精品国产乱码久久久| 国产精品黄色av电影网| 亚洲精品国产精品国自产在线| 成人午夜视频网站免费在线观看| 国产在线观看片a免费观看| 欧洲日韩中文在线| 最近国产免费中文字幕| 精新精新国产自在现拍| 人人妻人人添人人爽日韩欧美| 久久久久久人妻精品一区按摩| 五月婷欧美国产中文字幕| 欧美成人精品免费视频网站| 国产高清免费在线| 黄色裸体一区二区| 亚洲精品国产96| 国产成人精品国内自产拍视频| 久久久女人妻96一区精品香蕉| 亚洲 中文在线视频| 福利一区二区国产| 一级片在线免费播放| 日韩欧美大片免费观看在线观看| 欧美激情在线网址| 亚洲av大全在线观看中字幕| 欧美高清在线观看不卡| 福利视频一二三区| 欧美一级香蕉毛片在线看| 亚洲精品亚洲人成人网人体| 色欲天天网站欧美成人福利网| av黄色在线免费观看不卡| 不卡高清av影片在线观看| 国产 欧美 日韩制服| 黄站午夜福利观看| 日韩人妻中文字幕日日骚| 中文字幕视频大全网站| av网址不卡在线免费观看| 久久婷婷久久一区二区三区| 国产精品高潮久久久久久养生馆| 精品欧美va在线观看| 国产福利小视频免费在线观看| 精品伊人中文字幕| 亚洲2022av国产精品| 亚洲国产精品自产拍在线播放| 久久午夜鲁丝午夜精品| 欧美人与动牲交aⅴ| 亚洲精品视频导航| 亚洲精品中文字幕在线| 亚洲 欧美 在线 不卡| 中文字幕在线欧美亚洲青青草原| 免费人成黄页在线观看国产 | 中文字幕第一页在线免费观看| 直接播放日本高清视频在线网站| 欧美在线不卡高清视频| 黄三级日本一区二区| 久久久精品欧美综合| 亚洲精品视频导航| 精品国自产拍在线观看| 18禁黄国产精品一区二区白浆| 在线不卡不卡一区二区| 久久久国产日韩一区二区三区| 亚洲天堂三级视频| 日本免费啪视频在线观看| 熟女乱免费一区二区| 国产精品日本一区二区| 五月婷欧美国产中文字幕| 茄子视频国产精品| 欧美精品自拍视频在线看| 国产亚洲欧美专区在线| 美女网黄视频在线观看不卡| 国产非洲一区二区三区久久久| 国产日本亚洲福利18在线看| 最新日韩精品在线免费观看| 青草伊人久久综在合线亚洲观看| 亚洲精品无码aⅴ中文字幕| 人人妻人人澡人一人爽欧美一区 | 亚洲精美视频在线观看| 中文字幕亚洲国产有码| 不卡免费观看av 免费av观看不卡| 亚洲成人av在线播放观看| 人妻少妇久久久久久久| xxxx国产精品视频| 色婷婷亚洲成人网| 啊啊啊啊色国产又黄又爽| 韩日一级人添人人澡人人妻精品| 人妻精品视频在线| 成人一级片免费观看| 最近免费欧美日韩在线视频| 一级少妇一区二区| 欧美精品在线免费| 在线观看专区欧美在线| 国产精品视频黄的免费| 亚洲人禽杂交av片久久 | 久久综合精品91| 中文字幕一二三区在线| 日本 亚洲 黄色 免费| 欧美内射精品在线观看| 波多野亚洲熟妇一区二区| 在线观看不卡日韩视频| 亚国产成人精品久久久国产 | 色哟哟哟—国产精品| 国产又白又嫩又紧又爽18p| 久久夜色精品国产卜| 国产福利一区二区在线视频 | 亚洲国产精品三级在线观看| 午夜在线亚洲精品福利| 黄色一区二区日韩| 亚洲黄色美女免费网站| 国产一区二区免费午夜电影| 欧美日韩在线观看视频平台 | 亚洲欧美精品店在线观看| 麻豆精品国产一区二区| 在线日本中文字幕网| 一区二三区四区乱码在线| 欧美日韩国产不卡在线观看| 成人午夜日韩精品| 免费观看无遮挡www的小视频| 免费人成视频在线观看色网址| 中文字幕精品日韩综合| 国产精品大香蕉在在线| 亚欧洲精品在线视频| 日本黄色视频一区,二区 | 在线电影免费观看二卡av| 欧美视频中文字幕| 亚洲一区免费视频| 国产又色又爽视频在线观看| 亚洲v成人天堂影视| 麻豆午夜激情视频| 亚洲乱码一区二区三区三州91| 琪琪 在线视频一区二区三区| 久久www免费人成看片入口| 亚洲v韩国v欧美v精品| av一区二区三区色| 四虎影在线在永久观看| 一区二区三区国产精品自拍| 日本成人久久一区| 成人深夜福利在线视频| 伦理av在线一区二区| 国产suv精品一二区| 在线不卡中文字幕播放| 中文字幕在线观看视频欧美精品 | 久久精品国产亚洲aaa| 国产suv精品一区二区五免费| 亚洲国产一区二区a毛片变态| 欧美激情轻欧美一区二区| 国产91av免费在线| 三级中文字幕在线播放 | 日本免费大黄在线观看| 蜜臀视频在线一区二区三区| 136fldh导航福利微拍| 日韩精品最新久久久| av福利一区二区三区| 亚洲国产精品免费线观看视| 国产日产精品一区二区三区| 日韩免费一区二区人妻丝袜| 国产精品亚洲综合色| 国产精品久久久久1卡2卡| 老熟女乱淫视频一区二区| 中文字幕国产视频一区| 欧美日韩久久精点| 色婷婷久久综合中文久久| 亚洲一区二区在线观看中文字幕 | 日韩影院成人精品| 色综合欧美在线视频区| 亚欧美精品一区二区三区四区| 久久综合久久综合婷婷| 国产美女福利最新网址在线观看| 在线观看一区二区三区www| 国产午夜美女免费视频| 亚洲精品国偷拍自产在线观看蜜臀 | 日韩精品 亚洲成人| 国产日韩欧美综合妖精视频| 日本人妻精品视频| 国产在线精品观看一区二区| 成人av天堂中文在线| 精品日韩久久久久久久| 久久午夜鲁丝午夜精品| 视频一区 视频二区 在线| 女同一区二区三区| 亚洲 欧美 制服 中文 综合| 亚洲欧美另类成人一区| 欧美精品一区二区自拍中文主播| 三上悠亚精品二区| 国产精品进线69影院在线| 97精品久久人人爽| 国产又粗又猛又大爽又黄| 国产精品久久久久久久模特人妻| 日本欧美在线观看视频一区| 激情婷婷九九综合99| 嫩草伊人久久网站少妇精品| 中文字幕精品日韩综合| 国产精品自产拍在线观看777| 婷婷国产成人久久精品| 中文字幕av一区二区三区人妻少妇| 日韩作一区二区三区| 国产激情一区日韩| 久久久久久久亚洲精品影视| 国肉精品国产三级国产av| 日韩精品高清视频在线| 女人被免费网站视频在线| 亚洲狠狠狠婷婷久久久| 亚洲精品成人少妇av网站| 欧美伊人激情综合网| 国产成人精品在线一二三区| 少妇人妻综合久久中文字幕蜜| 久久精品 国产高清| 亚国产成人精品久久久国产 | 中文字幕对少妇高潮| 日日躁狠狠躁夜夜躁| 狠狠躁天天躁夜夜添人人| 最新国产精品视频导航| 99r视频这里只有精品| 欧美制服素人中文| 亚洲一区二区三区片| 激情五月综合91| 精品久久久久久人妻无| 色老头在线观看一区二区三区| 欧美一区二区三区放荡老妇| 国产精品久久毛片影院| 免费观看的黄色av| 大象传媒成人在线观看| 中文字幕综合在线观看~| 久久66热re国产毛片基地| 琪琪 在线视频一区二区三区| 一级黄色大片中文字幕| 国产成人av片在线| 日本精品视频在线观看网站| 亚洲成av片一区二区久| 国产爽人人爽人人片av| 欧美制服素人中文| 欧美女↗区二区三区| 亚洲综合色成在线观看| 国产精品99久久99久久久不卡| 久久久精品视频国产| 精品少妇人妻嫩草av无| 日本欧美在线观看视频一区| 亚洲国产日韩视频在线观看| 久久精品免费人妻| 国产91av在线| 日韩av三级成人在线| 日韩欧美制服自拍| h片在线观看精品一区| 日韩激情av在线播出| 手机福利看片永久免费| 国产在线一区二区香蕉 在线| 亚洲乱码av一区二区蜜桃| 久久综合天天日夜| 中文字幕人妻诱惑在线| 国产丝袜91久久久久久久久| 激情自拍亚洲欧美日韩| 日本精品一区二区三区视频| 精品一区二区三区在线视频观看| 亚洲美女少妇一区二区三区| 久久伊人不卡了精品酒店| 精品人妻伦九区久久片| 在线视频观看免费亚洲| 偷国产乱人伦偷精品视频香蕉| 国产福利片一区二区| 精品亚洲不卡一区二区三区四区 | 欧美美女一区二区免费| 免费国产在线视频自拍白浆| 激情欧美日韩亚洲| 日韩欧美制服自拍| 免费一级做a爰片久久毛片潮喷 | 在线免费观看av不卡| 国产日产精品一区二区三区| 鲁啊鲁啊鲁在线视频播放| 日韩精品三级视频在线观看| 中文字幕一级特黄大片| 中文字幕网在线中文免费| 亚洲狠狠人妻一区| 精品少妇123区| 免费人成视频在线观看网址| 欧美精品偷拍亚洲| 天堂无码人妻精品av一区| 久久人妻中文av 久久中文人妻av| 8av国产精品爽爽在线播放| 精品少妇一区二区视频在线观看 | 国产一区亚洲欧美在线| 久在线视视频在线观看| 91精品免费久久久久久久久| 不卡中文字幕视频在线| 另类视频不卡视频国产不卡视频| 久久人妻久久久人妻| 国产又粗又黄又爽免费视频| 2018欧美日韩人妻| 国产日本欧美在线看| 国产成人精品免高潮费视频| 国产日韩欧美视频一区二区三区| 亚洲欧洲中文日韩a乱码| 亚洲激情综合在线| 清纯唯美激情另类亚洲| 激情婷婷九九综合99| 国产午夜亚洲精品| 一区二区午夜在线| 亚洲一区在线免费观看91| 欧美 日韩 人妻 高清 中文| 无码精品不卡一区二区三区| 91精品国产自产在线在老师啪| 美女拍拍拍免费视频观看| 99在线热这里只精品视频| 久久久区一区二区三区| 国产乱国产乱300精品| 亚洲人成在线免费网址| 岛国毛片视频网站免费| 欧美人妻日韩一区二区三区| 国产一区二区三区四区五区入口| 日韩欧美中文三级| 精品人妻av区乱码久久蜜臂| 91精品久久久久久久久| 久久偷看各类wc女厕嘘嘘| 国产成人精品国内自产拍视频| 男人的天堂在线视频99999| 免费久久久中文字幕观看视频| 国产精品久久久久久久久电影网 | 天天综合网在线观看| 国产美女又黄又爽又色网站| 国产精品久久久内射| 免费的欧美一区二区| 国产日韩欧美视频一区二区三区| 亚洲欧美日本一卡二卡三卡| 婷婷久久久亚洲中文字幕| 猫咪在线观看视频最新地址| 欧美精品人妻视频| 亚洲综合欧美第一页| 正在播放国产av一区二区| 哦美激情中文字幕亚洲| 亚洲不卡中文字幕无码| 91p1精品在线观看| 成人黄色av大片在线| 91精品国产全国免费观看| 99精品欧美一区二区三区蜜臀| 国产一级精品久久久久| 久久国产精品视频免费播放| 日韩专区免费网站| 91精品门事件在线观看| 色偷偷人人澡久久超| 久久国产这里有精品视频 | 日本视频在线视频一区二区| 久久人妻中文av 久久中文人妻av 中文字幕视频大全网站 | 亚洲天堂无码高潮激情视频| 色综五月亚洲欧美婷婷| av免费在线一区二区不卡| 亚洲中文字幕日韩免费| 女女在线观看大全网站免费| 国产原创在线观看91| 东方av免费观看久久av| 动漫精品专区一区二区三区| 色国产精品免费观看入口| 精品成人不卡视频| 国产av一区二区6| 久久久久久综合亚洲| 婷婷综合久久精品| 日韩欧美另类片在线观看| 亚洲美女少妇一区二区三区 | 国产一精品一v一免费| 91精品视频免费在线观看| 亚洲精品中文字幕久久久久| 中美性猛交xxxx乱大交3| 国产成人sm精品视频免费网站| 亚洲精品国产96| 亚洲男人第一av天堂| 亚洲精品视频大全在线观看| 天天操夜夜操视频精品| wwwxxx在线| 日韩作一区二区三区| 亚洲一区三区在线播放| 中文字幕亚洲综合久久2020| 蜜臀aⅴ国产精品久久久国产| 国产精品国产精品一区精品国产| 少妇欧美成人精品日韩网址| 国产精品第72页| 中文字幕视频大全网站| 丰满无码人妻熟妇无码区| 中文无线乱码字幕在线观看| 女人高潮内射99精品| 手机看片国产永久免费在线观看| 国产精品一品久久| 精品蜜桃久久久久| 欧洲精品乱码久久久久久按摩| 人人色在线视频播放| 亚洲综合视频一二三区| av天堂资源总部在线观看| 极品少妇视频一区二区| 欧美国产综合一区| 欧美激情五月综合| 亚洲激情五月天久久| 色婷婷影院一区二区乱码| 91午夜精品福利视频| 亚洲国产精品日韩在线观看| 老熟女精品视频12区| 韩国日本欧美一区二区视频| 色婷婷久久久wg精品| 一区二区三区av观看| 中出中文字幕制服在线观看| 国产激情一区免费| 免费一区二区三区高清| 综合久久给合久久狠狠狠97色| 99国产三级精品三级在线专区| 永久免费国产在线观看| 中文字幕人妻诱惑在线| 成年人午夜福利av| 欧美精品老妇一区二区| 国产精品免费手机在线网站| 色男人天堂网免费在线视频 | 黄片视频在线观看亚洲人| 亚洲 欧美 精品| 在线免费观看不卡av网站| 免费人成视频在线观看色网址| 久久麻豆亚洲av 久久久久亚洲av大片| 精品一区二区狼人视频| 日本欧美一区二区三区337p| 色婷婷久久久wg精品| 伊人依成久久人综合网| 亚洲免费欧美在线观看| 日韩精品高清视频在线| 91精品国产麻豆国产自产在线| 色婷婷成人综合视频| 日韩精品欧美激情电影在线观看| 亚洲男人天堂.av免费观看| 在线视频观看免费亚洲| 99热这里精品在线观看| 九九亚洲视频在线观看| 美女在线视频三区| 久久人妻中文av 久久中文人妻av| 国产日产精品一区二区三区| 日本欧美精品中文| 最新亚洲中文av在线不卡| 亚洲国产综合日韩| 少妇高潮惨叫久久久久电影69| 国产一区在线播放av| 久久蜜臀亚洲一区二区| 亚洲中文字幕av免费在线观看| 国产又粗又猛又大的视频| 激情福利在线观看| 一区二区三区无码高清视频| 波多野结衣aⅴ一区| 中文字幕一区二区在线不卡视频| 秋霞电影在线五月婷婷激情综合| 在线电影免费观看二卡av| 一区二区三区拍拍午夜福利视频 | 亚洲国产成人精品女人久久…| 91人妻人人爽人人狠| 日韩欧美中文字幕一区二区三区| 精品欧美视频免费在线观看| 一区二区三区午夜免费福利视频| 在线观看免费视频亚洲精品| 久久久久久免费精品推荐| 可以免费观看的亚洲av| 久久久精品视频一区| 一级特黄aaa大片| 日韩高清欧美一区二区| 欧美日韩免费一区| 免费黄色小视频在线观看| 在线免费观看av中文字幕| 女女在线观看大全网站免费| 日本理论视频中文字幕| 日韩欧美网站在线观看视频| 国产美女女优网站免费观看| 亚洲2022av国产精品| 九九热在线精品视频观看| 精品性成人免费视频观看| 欧美色一区人人妻人人妻3d| www.成人a视频在线观看| 亚洲 综合 欧美在线| 黄色一区二区日韩| 国产精品久久久久秋霞鲁丝| 久久精品一中文字幕!| 哦美激情中文字幕亚洲| 精品99久久精品| 成人午夜日韩精品| 亚洲欧美另类麻豆综合网| 亚洲男女午夜福利在线观看| 亚洲综合视频一二三区| 国产又粗又长又猛又爽又黄视频| 亚洲欧洲中文字幕在线| 5g免费影院永久天天影院在线| 国产三级精品三级观看| 不卡在线观看中文字幕| 日韩欧美精品中文字幕| 亚洲人成在线免费网址| 午夜精品久久久久久xyz| 国产精品美脚玉足脚交欧美图片| 成人av一区二区三区蜜臀| 日本高清中文字幕网站| 亚洲欧美一区国产精品| 日韩欧美国产网站在线观看| 欧美久久久精品中文字幕| 亚欧成人精品一区二区| 在线免费日韩av| 欧美日韩久久亚洲| 欧美不卡在线免费视频| 欧美午夜视频免费观看| 欧美一区二区不卡在线视频观看| 国产又粗又猛又大爽又黄 | 肥熟女巨臀亚洲一区二区三区| 欧美在线精品系列| 国产一区二区三区免费网站| 国产精品日本一区二区视频| 日本精品电影一区二区| 亚洲免费一区二区网站| 久久超级碰碰碰一区二区三区 | 亚洲免费a级黄片视频| 亚洲国产黄片一区二区| 91精品一区二区三区在线观看| 亚洲女人被插尤物视频| 日韩一区二区亚洲| 中文字幕精品日韩综合| 色婷婷久久久久swag精品| 亚洲精品v天堂中文字幕| 久久久久久深夜免费黄色片| 久久久精品妇女99| 欧美黑人粗大精品一区| 视频一区二区观看| 亚洲成人黄色手机在线观看| 欧美激情一区日韩| 一区在线不卡av 在线不卡av一区| 国产精品v免费观看| 日本福利视频中文字幕| 色狠狠一区二区三区熟| 加勒比av乱码一区| 噜噜噜久久亚洲精品 | 日本在线精品中文视频| 99国产成人免费视频| 国产亚洲一二三区精品| 欧美女↗区二区三区| 国产精品又爽又黄一区二区三| 亚洲成人精品字幕| 国内少妇人妻偷人精品解说| 国产精品porn| 欧美一区精品中文字幕| 人妻少妇久久久久久久| 在线免费看片中文字幕| 欧美伦理熟女一区二区| 亚洲色婷婷一区二区三区| 人人妻免费在线视频| 在线最新免费av不卡| 久久久免费精品免费中| 国产高清不卡在线观看av| 亚洲av网站在线观看网站| 亚洲国产精品视频观看| 欧美日韩91久久| 色欲亚洲欧美日韩精品自拍| 在线观看人成国产| 丰满人妻日韩一二三区不卡| 91精品一区在线播放| 大伊香蕉精品视频在线天堂女| 国语自产少妇精品视频| 人妻蜜桃av一区二区| 136fldh导航福利微拍| a级黄片免费观看久久| 丰满无码人妻熟妇无码区| 午夜福利在线播放免费| 肉丝精品一区在线观看| 欧洲成年人av在线播放| 国内老熟妇对白xxxxhd| 日本高清一区二区三区水蜜桃| 少妇无套内射呻吟高潮久久久| 看片网址av中文字幕在线观看| 国产亚洲中文字幕成人| 亚洲精品中文字幕999| 国产又爽又色视频精品网站| 东京热久久只有精品6| 日韩欧美精品中文字幕| 最新国产三p露脸对白| 精品欧美一区二区三区播放| 好看精品日本一区二区| 成人免费在线观看网站| 最新中文字幕在线观看一区| 欧美日韩中文字幕一区二区樱花 | h电影在线播放av| 欧乱色国产精品兔费视频| 亚洲成人三区四区| 日韩一区二区亚洲| 视频一区二区三区资源| 蜜桃视频在线观看免费| 久一午夜福利视频| 超碰97人人做人人爱亚洲尤物| 2020国产在线| 亚洲精品一区二区三区电影网| 女同一区二区在线观看| 精品欧美视频免费在线观看| 国产精品久久91久久| 手机av免费在线观看| 亚洲欧美国产剧情| 最新中文字幕一区视频| www.成人a视频在线观看| 国产在线精品一区二区中文| 亚洲欧洲中文日韩a乱码| 久久精品成人一区二区三区| 亚洲福利午夜视频| 日本成人精品视频在线| 亚洲永久精品ww47在线观看| 亚洲男人天堂一区| 欧美精品人妻视频| 久久国产精品久久99| 在线播放高清国语自产拍免费| 久久国内精品自在自线400部| 国产精品久久久久秋霞鲁丝| 亚洲乳大丰满中文字幕少妇av| 国产免费av网站入口| 永久黄网站色视频不卡在线观看| 国产精品久久久久久久成人午夜 | 日韩精品 亚洲成人| 久久久久久久综合岛国免费观看| 成人深夜福利在线视频| 黄色免费电影av 亚洲www啪成人一区二区麻豆 | 99精品国产乱码久久久| 在线一区二区午夜| 亚洲av网站在线免费| av深夜福利免费观看| 中文字幕在线欧美亚洲青青草原 | 在线天堂av网站 在线免费av天堂| 欧美制服素人中文| 中文字幕日韩二区| 成人av天堂中文在线| 蜜桃av噜噜一区二区三区麻豆| 亚洲综合另类色图| 亚洲男人第一av天堂| 亚洲色图中文字幕色婷婷| 久久精品国产99久久无毒不卡| 国产麻豆一区在线| 久久精品手机免费看片| 亚洲中字字幕中文乱码| 一区二区三区av在线网| 亚洲精品视频在线观看免费网址 | 看片网址av中文字幕在线观看| 四虎在线免费播放| 欧美日韩无线码免费播放| 丰满女人又爽又紧又丰满| 中文字幕免费视频不卡二区| 成人午夜视频免费观看| 2018欧美日韩人妻| 亚洲一区二区免费视频观看| 中文字幕av网站免费看| 午夜免费高清网站| 久久女人精品天堂av影院麻豆| 黄色av免费日韩一区二区| 久久亚洲激情五月天| 中文字幕久久综合网| 亚洲人成电影网站国产精品| 亚洲综合久久久99| 美女在线视频三区| 免费一区二区三区四区| 久久久亚洲老熟妇熟女| 亚洲av三区在线播放| 亚洲国产成人在线观看免费| 日本午夜少妇福利电影在线观看| 91原创精品视频在线观看| 91精品福利一区二区三区 | 熟女熟妇伦AV网站| 国产亚洲精品拍拍拍拍拍| 91午夜精品福利在线亚洲| 亚洲av手机版久久精品| 国产高清在线观看精品| av天堂吧手机版在线观看| 国产二区不卡av 国产av一区二卡| 日本精品电影一区二区| 亚洲欧美在线一区中文字幕 | 久热视频这里只有精品68| 蜜99国产欧美久久久精品| 亚洲av中文有码在线| 亚洲成人黄色手机在线观看| 欧美自拍另类亚洲| 久久精品成人一区二区三区 | 国产快播一区二区三区在线看| 无码精品不卡一区二区三区| 免费裸体视频一区二区| 欧美一区精品中文字幕| 精品美女极品美女在线观看网站| 欧美女↗区二区三区| 自拍欧美日韩亚洲| 日韩午夜理论在线观看1000| 在线免费观看黄色网址| 日韩欧美另类片在线观看 | 麻豆一区二区91久久久| 欧美日韩激情视频免费观看| 国产一区二区三区香蕉| 国产男女爱视频在线观看| 国产精品视频三级| 精品一卡2卡新区乱码在线| 色综合网欧美久久网| 久久成人福利网站| av天堂一区二区三区精品| 婷婷中文字幕综合在线视频| 国自产拍精品偷拍视频| 99久久er热在这里只有精品99| 日韩综合精品视频在线观看| 欧洲成年人av在线播放| 精品视频精品91美女视频| 亚洲 中文在线视频| 欧美成人生活视频在线观看| 欧美日韩黄色一区| 国产毛 片久久久久| 中文字幕在线观看国产| 欧美午夜视频免费观看| 久久蜜臀亚洲一区二区| 粉嫩av夜夜澡人人爽人人| 日本电影一区二区在线观看| 一区二区三区亚洲网站啪啪| 亚洲国产精品成人av| 欧美,日韩久久中文字幕1| 午夜久久久久久久| 日韩精品高清视频在线| 久久国产深夜福利| 狠狠爱91精品婷婷| 欧美日韩成人在线免费| 欧美人妻 自拍 第一页| 精品人妻av区乱码久久蜜臂| 国产三级精品三级男人的天堂, | 精品一区二区三区四区视频观看| 老司机免费精品福利视频| 亚洲av综合不卡一区| 免费网站一区二区三区| 伊人色在线综合网| 久久精品国产亚洲av麻豆影视| 精品乱码一区二区三区不卡视频 | 少妇人妻 中文字幕| 九九视频在线观看6伊人| 91在线国产在线一区视频| 日韩欧美亚洲一级| 国产成人女人在线观看| 成人国产在线视频| 国产欧美日韩亚洲视频| 人妻蜜桃av一区二区| 日韩理论亚洲精品| 国产日韩欧美一线二线| 欧洲精品一区在线观看视频| 一级黄色大片中文字幕| 中国女人一级做受免费视频| 亚洲国产精品午夜福利在线播放| 成人H动漫精品一区二区无码| 日韩亚洲欧美午夜| 欧美日韩国产免费一区二区三区| 欧美精品老妇一区二区| 亚洲超碰中文字幕在线| 免费观看在线不卡毛片| 成人粉嫩av一区二区| 观看免费在线日韩黄色av网站| 精品四虎免费观看国产高清| 日韩丝袜中文字幕在线| 中文字幕一区二区在线不卡视频| 国产精品久久密av| 亚洲中文字幕乱码人妻2| 精品久久91麻豆| 嫩国产精品嫩草影院久久久久| 欧洲va亚洲va在线观看| 欧美日韩精品亚洲欧美| 国产精品久久密av| 国产精品国产精品| 亚洲精品中文字幕在线安v| 青青青青青国产免费观看| 日韩欧美高清久久久| 国产精品美女三级| 亚洲天天做夜夜做天天欢人人| 人人澡人人澡人人看欧美| 国产精品国产三级中文| 久久久免费精品免费中| 深夜成人福利久久| 国产 欧美日韩视频区| 美女视频免费区一区二区三| 国产精品一区二区电影| 国产片av片永久免费观看| 日本电影一区二区在线观看| 老司机成人av在线| 午夜短视频在线观看欧美| 国内精品久久久久影院优| 中文字幕成人亚洲乱码电影| 日韩综合精品视频在线观看| 亚洲精品视频在线观看免费视频| 精品91久久久久久久久久| 久久精品99久久香蕉欧美| 91精品网站天堂系列在线播放| 两性视频久久香蕉| 少妇久久一区二区| 在线麻豆一区国产| 96精品国产高清在线看入口| 国产成人8x人网站在线视频| 最新亚洲中文av在线不卡| 欧美亚洲精品国产1区2区| 色婷婷久久久wg精品| 91一区二区三区| 日韩av大全在线播放| 欧美日韩一区二区三区精品| 中文字幕第三页在线播放| 在线观看成人美女| 成人一区二区网站| 亚洲淑女一区二区| 日韩精品中文字幕一区二区三区| 精品久久久久字幕一区| 国产免费一区二区三区播放| 夜色福利在线视频观看| 亚洲最大欧美日韩色| 中文字幕第5页在线视频| 久热视频精品在线| 国产av成人中文字幕| 国产成人中文字幕在线| 日本免费不卡中文字幕| 99国产精品丝袜美腿| 九九99热久久精品在线5| 99精品国产乱码久久久| 国产精品污一区二区三区| 亚洲av国产综合一区| 92看看一区二区三区在线观看 | 久久香蕉国产线看观看av| 91精品免费久久久久久久久| 国产成人8x人网站在线视频| 中文字幕在线观看视频在线观看| 人妻满足中文字幕| 2020国产在线| 亚洲免费一区二区网站| 国产色老汉av网站新址| 少妇人妻精品一区二区传媒蜜臀| 伊人色在线综合网| 国产精品久久久久久人妻爽 | 日本美女久久一区二区| 在线观看免费亚洲黄色片| 国产日韩欧美在线精品| 亚洲av乱码久久精蜜桃av| 19久久久国产一区二区| av影院一区二区三区| 国产精品一区第二页尤自在拍| 欧美 日本 国产 在线a∨观看| 国产亚洲不卡一区二区三区| 在线播放高清国语自产拍免费| 99国产精品国产精品毛片| 最新国产视频一区在线播放| 无码人妻丰满熟妇区bbbbxxxx| 国产精品网站的黄色| 欧美喷潮极限另类视频| 日本女妇一区二区三区| 亚洲第一第二区精品| 午夜免费视频a区| 国内精品伊人久久久7777| 亚洲一区二区在线观看中文字幕| 亚洲不卡中文字幕无码| 欧美高清在线观看不卡| 久碰香蕉视频在线观看精品| 国产一区欧美亚洲第一页| 免费成人午夜电影网站| 2018在线观看欧美中文字幕| 午夜理论欧美理论片| 日韩av三级在线| 国产黄色美女免费看| 91p1精品在线观看| 久久亚洲春中文字幕久久久| 日韩一区国产一级| 国产精品视频三级| 精品久久久久久久中文字幕| 日本欧美亚洲三级| 亚洲乱码一区二区三区三州91| 最新日韩精品久久久| 蜜臀av午夜精品福利一区二区| 久久伊人不卡了精品酒店| 一区二区三区高清在线视频| 欧美成熟美女在线不卡电影| 中国女人一级做受免费视频| 国产熟女一区二区精品视频| 日韩不卡欧美在线一区| 久久国产精品免费一区六九堂| 国产免费一区三区三区视频| 日本人妻精品一区视频| 99久久久久国产精品免费| 久久久久久蜜桃精品| 国产精品又爽又黄一区二区三| 欧美日韩在线视频免费完整| 欧美a级片一区二区| 男人天堂一区二区av| 一区二区三区视频区| 免费观看无遮挡www的小视频| 久久成人欧美日韩| 日本永久在线中文字幕| 四虎影院日韩精品| 最新国产精品视频导航| 午夜爽爽久久久毛片| 国产精品免费麻豆入口| 在线三级日韩三级国产三级| 欧美日韩在线观看视频平台| 亚洲免费精品网站—亚洲精品| 国产福利区一区二区| 午夜福利国产成人a∨在线观看| 久久香蕉国产线看观看av| 免费高清在线毛片| 天天一区二区三区av| 亚洲国产日韩在线观看视频| 成人看片在线无限看免费视频 | 蜜桃视频在线观看网站麻豆| 九九热这里只有精品6| 狠狠爱91精品婷婷| 色婷婷在线观看视频在线观看| 亚洲国产精品视频观看| 久久成人免费观看| 盗摄偷拍一区二区三区| 小网站在线播放二区三区| 在线观看99精品视频| 亚洲av成人在线播放| 亚洲一区二区色女视频| 亚洲成人福利资源网| 日韩看片一区二区三区| 亚洲日韩精品无码av海量| 国产精品自产拍在线观看777| 国产精品国产三级国产一区| 色婷婷久久综合中文久久| 日本永久在线中文字幕| 国产精品永久免费视频| 精品久久午夜精品电影| 亚洲欧洲人人爽人人爽91av | 人妻乱人伦中文在线| 午夜福利欧美激情福利| 欧美在线不卡高清视频| 成人免费看黄yyy456| 国产精品久久久久1卡2卡| 综合av电影不卡在线观看| av中文不卡在线播放| 伊人久久狠狠综合| 伊人国产亚洲精品| 人妻美女交中文字幕| 国产精品四区在线观看| 在线中文字幕乱码六| 久久久久综合精品福利| 午夜精品女人香蕉区| 国产免费久久精品99re香蕉| 在线观看不卡日韩视频| 99久久免费精品二区| 97超级碰碰碰碰精品| 国产熟女福利精品最新| 男人的另类天堂在线视频| 日韩字幕第三页日韩字幕第三页| 一本色道久久爱手机版下载| 乱码日韩中文字幕| 91午夜精品福利视频| 亚洲欧美丝袜另类在线| 久久视频这里只精品23热在线观看| 国产精品久久2区| 亚洲欧美丝袜另类在线| 亚洲精品国产96| 亚洲 欧洲视频免费| 久久国产精品99久久久久久牛牛| 亚洲一卡二卡在线免费观看| 三级中文字幕在线播放| 日韩欧美网站在线观看视频| 日本久久一区二区三区精品| 日韩精品久久久久久久18| 日韩欧美亚洲综合首页| 激情视频中文字幕人妻久久久久| 国产精品123区| 日本一区二区三区免费区| 欧美亚洲日本国产综合网| 日韩欧美三级在线观看a| 中文字幕高清在线一区二区三区 | 国产精品免费爽爽爽| 久久精品一级黄片| 日韩av中文字幕免费观看| 日韩二区中文字幕在线| 欧美一区二区三区免费在线观看| 91一区二区三区| 国产又粗又猛又大的视频| 在线不卡中文字幕播放| 国产毛 片久久久久| 国产一区二区一一区在线观看| 在线观看视频一区二区精品| 日韩一区二区亚洲| 国产又色又爽视频在线观看| 国产精品视频我不卡| 亚洲综合视频在线播放| 国产成人福利视频在线观看| 97在线精品国自产拍中文| 丰满人妻乱淫精品.| 亚洲乱码一区二区三区三州91| 久久久精品妇女99| 亚洲永久黄网站在线在线播放| 欧美人与禽猛交乱配视频| 精品人妻久久久久久久久久久久| 一区二区三区高清免费在线| 国产成人一区二区三区影院播放 | 2020av男人亚洲天堂| 欧美国产成人精品| 日本午夜少妇福利电影在线观看| 成人国产在线视频| 日韩亚洲av日韩乱码| 91久久久久久人妻| 在线观看国产高清免费不卡色| 熟女少妇精品一区二区| 亚洲 欧美 精品| 久久久久综合精品福利| 国产精品久久免费一区dyd| 免费大片黄色国产在线观看| 国产亚洲精品日韩欧美| 中文字幕久久精品波多野结百度| 日韩av成人在线观看网站| 韩日一级人添人人澡人人妻精品| 亚洲视频日韩在线视频| 日韩欧美在线观看91| 国产精品污一区二区三区| 亚洲人妻在线视频看看| 日韩在线免费观看电影一区| 国产MD视频一区二区三区| 乌克兰女人大白屁股ass| 亚洲伊人久久大香线蕉影院| 亚洲精品日韩综合观看成人91| 午夜人妻精品理论片中文字幕| 国产婷婷91在线精品| 亚洲专区欧美久久| 免费在线亚洲成人| 免费看国产三级黄片在线看不卡 | 国产熟人精品一区二区| 久久国产精品伊人| 老熟女无套内射国产视频| 91精品国产全国免费观看| 九九热这里只有精品免费看| 国产va亚洲va| 欧美精品不卡在线| 亚洲天堂网站在线观看视频| 欧美黄色一区二区三区| 国产成人深夜免费观看视频在线| 日韩国产亚洲视频在线观看 | 日韩av永久无码不禁网站| 九九在线精品视频久久| 九九热在线精品视频观看| 自由成熟的性色视频免费观看| 操你啦天天免费视频| 国产一级二级三级在线| 日本人妻少妇久久| 玖玖资源麻豆中文字幕久久| 日本人妻精品视频| 国产字幕中文在线视频| 九九热这里只有精品6| 日本欧美视频网站色| 亚洲中文字幕无码卡通动漫野外| 视频亚洲日本欧美三区| 久久久国产日韩一区二区三区| 国产一区二区三区四区五区密私| 久久久精品美女mm久久久| 黄色电影在线免费看| 欧美诱惑在线观看视频一区| 视频 福利 在线 午夜| 亚洲天天做夜夜做天天欢人人| 亚洲精品麻豆一二三区| ,日本熟妇中文字幕aⅴ| 亚洲成av人片精品久久久久久| 免费观看污视频网站| 国产综合自拍视频网手机不卡| 日韩美女精品黄片| 欧美乱强伦xxxxx高潮| 亚洲人人夜夜澡人人爽| 久久精品一区二区三区动漫| 免费看特黄一级片| 欧美一区二区人视频| 久久久久久免费精品推荐| 一区二区午夜在线| 欧美在线亚洲国产免m观看| 久久精品国产99久久99久久久| 香蕉社区一区二区三区| 亚洲中文字幕资源视频| 亚洲欧美在线综合视频| 中文字幕网站久久| 黄色永久网站在线免费观看| 手机福利国产在线| 92在线精品视频在线观看| 国产精品福利资源导航| 最近日韩成人免费视频| 欧美日韩精品亚洲欧美| 一区二区三区视频黄片| 一夜七次郎国产精品亚洲| 欧美国产日韩激情在线| 精品成人午夜久久久久久| 美女网站黄是免费看| 精品久久久久久字幕人妻| 国产麻豆精品在线观看免费| 日韩网站在线精品| 久久亚洲春中文字幕久久久| 精品国产成av片 青青人亚洲av免费观看| 国产美女丝袜高潮白浆网站!| 日韩av三级成人在线| 十八禁一区二区在线播放| 婷婷中文字幕综合在线视频| 精品人妻少妇久久久久综合| 国产在线观看片a免费观看| 亚洲欧美校园春色激情| 亚洲狠狠色成人综合网| 欧美国产日韩激情在线| 韩国三级国产精品一区| 中文精品久久久久人妻| 亚洲免费福利网站性色av| av中文在线观看免费| 四虎成人精品一区二区免费网站| 青草av久久一区二区三区| 国产精品久久91久久| 成人免费视频在线看| 九九亚洲视频在线观看| 国产一区在线播放av| 国产成人精品白浆久久| 国产女女同无遮挡互慰| 国产h精品在线观看| 99久久er热在这里只有精品99| 亚洲欧美日韩中文久久| 在线观看一区二区不卡av| 国产成人av网站一区在线看| 免费国产在线视频自拍白浆| 亚洲乱色国产精品| 亚洲国产日韩欧美视频三区| 亚洲综合在线7777| 黄色av免费日韩一区二区| 在线一区二区三区亚洲| 99热这里只有精品免费在线| 人妻中出中午字幕一区| 日韩不卡中文在线视频网站| 婷婷六月综合久久| 欧美国产日韩一级在线| 欧美性猛片aaaaaaa做受| 免费观看国产黄p| 久久精品夜夜夜夜久久| 韩国三级国产精品一区| 亚洲狠狠人妻一区| 日韩香蕉国产一区二区三区| 俺也色亚洲色图中文字幕| 亚洲性xxxxx极品少妇喷水| 乱中年女人伦中文字幕久久| 黄色在线观看网站| 欧美成人午夜视频在线| 99久久国语露脸精品国产不卡| 日韩人妻无码精品久久久不卡| 人妻中出中午字幕一区| 日韩涩涩一区二区三区| 亚洲天码中文字幕在线观看| 亚洲中文字幕国产福利| 亚洲日本乱码视频在线观看| 青草国产在线视频| 日韩aⅴ中文字幕在线播放| 老熟女乱淫视频一区二区| 亚洲另类自拍欧美| 亚洲天堂三级视频| 国产熟女一区二区精品视频| 国产又粗又黄又爽免费视频| 精品91自产拍在线观看一| 亚洲人成电影网站国产精品 | 亚洲成人三级在线观看| 欧美日韩黄色一区| 久久中文字幕视频网站| 亚洲永久精品ww47在线观看| 欧美成人aaaaaaaa免费| 2021年国产精品久久| 午夜一级二级三级| 黄站午夜福利观看| 亚洲精品一区二区三区视频| 亚洲天堂三级视频| 人妻无码中文专区久久av| 国产老女人精品一区二区三区 | 午夜视频在线观看黄片 | 日日躁狠狠躁夜夜躁| 国产视频精品一区精品二区| 欧美精品成在线观看| 中文乱码一区二区视频| 播放中文字幕二区| 国产成人a一区二区三区| 成人午夜影院网址| 国产高清在线视频一区二区三区| 久久av一区二区三区软件| 日本强乱中文字幕在线播放| 精品1区在线观看| 久久久精品欧美综合| 精品久久久中文字幕二区| 亚洲无线码在线一区观看| 精品亚洲视频欧美| 国产成人三级视频在线播放播| 激情丰满少妇嘿咻一区二区| 精品美女久久久av免费观看| 亚洲一卡二卡三卡在看 | 日韩人妻无码精品久久久不卡| 欧美国产成人精品| 99热这里只有精品免费在线| 99日本在线视频播放| 在线免费观看av中文字幕| 欧美黄色网页在线免费观看| 在线观看欧美人成| 日本电影中文字幕国产| 精品久久久久字幕一区| 欧美少妇超久久久| 一级特黄大片av在线| 欧美激情综合自拍| 国产在线观看高清不卡的av| www.一区二区少妇| 欧美精品久久99久久在免费线| 国产精品视频一区二区三区八戒| 91九色蝌蚪在线视频观看| 婷婷久久久亚洲中文字幕| 精彩视频在线观看一区二区| 一区二区三区三乱码精品毛片| 噜噜噜久久亚洲精品| av福利一区二区三区| 国产福利手机在线| 国产成人精品免高潮费视频| 少妇淫真视频一区二区| 亚洲欧美另类麻豆综合网| 中文字幕人妻丝袜系列| 99免费观看视频三区| xxxx国产精品视频| 精品极品国产呦在线观看| 欧美成人午夜一卡二卡在线视频| 中文字幕精品不卡| 一本色道久久综合狠狠躁邻居 | 中国黄色一级大片在线观看| 亚洲不卡中文字幕无码| 丰满无码人妻熟妇无码区| 国产一区二区三区日本精品| 国产成人精品免高潮费视频| 超碰97在线人人| 日韩欧美风情视频在线免费播放| 欧美日韩国产在线人成网站| 国产高清免费在线| 欧美黄色三级在线不卡| 免费人成黄页在线观看69| 狠狠做深爱综合婷婷| 少妇性色一区av 国产午夜精品不卡在线观看 | 久久香蕉国产线看观看手机| 91久久国产精品视频| 在线电影免费观看二卡av| 一区二三区四区乱码在线| 国产综合精品在线| 弄得少妇高潮一区二区网站| av在线不卡中文字幕电影| 久久蜜臀av一区三区| 亚洲综合av日韩综合av| 亚洲天堂无码高潮激情视频| 亚洲欧美日韩另类在线播放| 美女一区视频看看| 国国产精品蜜臀av免费| 亚洲电影欧美电影一区二区| 国产高清丝袜美女在线一区| 中文字幕av一区二区三区人妻少妇 | 国产成人欧美日本电影在线观看| 免费的不卡的福利影片在线播放| 亚洲成v人片一区二区| 外国一区2区黄色片| 亚洲成人精品字幕| 亚洲国产综合日韩| 久久国产精品久久99| 欧美人妻 自拍 第一页| 黄色激情网站中文字幕| 99久久国语露脸精品国产不卡| 日本aⅴ一二区在线观看| 激情亚洲熟女视频狠狠操| 一区二区三区在线观看电影网站| 国产高清色视频在线观看| 精品成人午夜久久久久久| 奇米影视777在线精品| 高清亚洲人成电影网站色| 久久亚洲女同第一区综合| 免费观看的黄色av| 粉嫩蜜臀av国产精品网站| av在线中文字幕天堂| 少妇9999九九九九在线观看| 国内精品自产视频在线播放| 欧美黄片在线免费直播观看视频| 性少妇mdms丰满hdfilm| 国产99久久久国产精品免费看| 日韩免费一区二区人妻丝袜| 成人午夜淫片免费在线观看| 丁香五六婷婷久久| 亚洲欧美国产剧情| 亚洲福利爱爱爱视频| 欧美日韩激情视频免费观看| 久久国产精品免费一区二区三区 | 亚洲精品女同一区二区三区网站| 亚洲欧美在线一区中文字幕| 国产精品自在线拍国产手机版| 亚洲精麻豆18av| 国产人成精品午夜在线观看| 国产av中文字幕片| 日韩欧美精品一区二区三区经典| 99在线观看视频婷婷| 久久久这里只有精品视频16| 2020自拍偷区亚洲综合图片| 一区二区三区福利| 最新精品国产av中文字幕| 精品久久欧洲精品| 国产日本欧美在线看| 久久中文字幕视频网站| 日本在线视频播放7区| 精品久久久久久中文字幕2017 | 亚洲s码欧洲m码国产av| 欧美a级片一区二区| 天天躁夜夜躁狠狠躁2021a2| 在线观看成人免费高清| 久热视频这里只有精品68| 国产区日韩区在线观看| 国产 欧美精品 字幕| 国产久精品久久久久久久影视| 六月丁香婷婷色狠狠久久| 欧美亚洲国产卡一| 成人久久之高端视频| 96精品国产高清在线看入口| 欧美一区二区伦理在线| 中文字幕最近少妇无套内射| 国产福利小视频免费在线观看 | 黄色小视频网站免费| 麻豆果冻精品一区二区| 国产一级片免费观看| 欧美一卡二卡一国产免费| 丝袜亚洲色图中文字幕| 亚洲中文字幕国产区| 国产精品久久国产亚洲av站长| 中文字幕超清在线免费观看| 欧美亚洲色图一区二区 | 国产与激情一区av| 天天久久狠狠夜夜| 久久www免费人成看片入口| 久久久免费精品电影| 国产91av在线| 亚洲日本精品在线观看| 日本黄色视频精品一区| 欧美中文字幕6666| 国产欧美久久久另类精品| 亚洲精品麻豆一二三区| 男人的另类天堂在线视频| 日韩申老妇女av在线播放| 成年人在线免费看av| 国产在线精品观看一区二区| 日韩aⅴ中文字幕在线播放|