人妻无码一区二区三区AV_日韩人妻无码专区久久_欧美巨大xxxx做受高清_内射中出日韩无国产剧情_无码爽大片日本无码AAA特黄_在线播放免费人成毛片乱码_国产一区不卡第二页_国产一级特黄不卡在线
佳學(xué)基因遺傳病基因檢測(cè)機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測(cè)就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因正確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測(cè)基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測(cè),佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測(cè)產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測(cè)準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會(huì)導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請(qǐng)自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評(píng)價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號(hào)-1;鄂ICP備2021017120號(hào)-1

設(shè)計(jì)制作 基因解碼基因檢測(cè)信息技術(shù)部

人妻无码一区二区三区AV_日韩人妻无码专区久久_欧美巨大xxxx做受高清_内射中出日韩无国产剧情_无码爽大片日本无码AAA特黄_在线播放免费人成毛片乱码_国产一区不卡第二页_国产一级特黄不卡在线 美女网黄视频在线观看不卡| 日韩熟妇丰满人妻| 大香大焦伊人中文字幕五月天| 国产精品午夜免费观看| 美女搞基视频麻豆蜜桃久久| 久久久久久久av| 午夜桃色国产精品| 人妻一区二区三区人妻黄色| 手机在线观看视频欧美日韩| 少妇人妻无码精品视频APP| 在线私拍国产福利精品| 色 综合 一区二区| 福利一区二区国产| 日韩一区国产一级| 国产av巨作久久久久久久| 中文字幕第3页一区二区| 国产三级精品三级在线看| 亚洲中文字幕第 30页| 噜噜噜久久亚洲精品 | 欧美日韩免费一级黄片| 亚洲视频在线不卡| 中文字幕在线观看第一页面| 国产原创精品一区| 最新国产三p露脸对白| 久久少妇呻吟视频久久久| 久久一区二区欧美| 国产一区二区啊啊啊在线观看| 国产精品毛片久久久久久妇女| 精品国产免费第一区| 亚洲日本精品一级| 人人妻人人澡人一人爽欧美一区| 亚洲视频精品一区二区三区| 欧美精品老妇一区二区| 日韩欧美一区视频| 久久caoporn国产免费| 粉嫩一区二区三区| 久久久久综合精品福利| 国产精品四区在线观看| 亚洲欧美日韩久久一区 | 国产又粗又黄又猛视频| 久久久久久一草婷婷视频网| 亚洲 中文在线视频| 国产精品久久久久网站| 亚洲成人久久综合网| 亚洲 欧美 日韩在线| 欧美国产日韩激情在线| 亚洲最新人妻在线| 亚洲精品久久久日韩美女极品| 欧美色综合二区三区四区| 欧美精品一区二区三区的| 91麻豆精品激情 在线观看| 国产91精品高跟丝袜在线欧美| 国产91精品高跟丝袜在线欧美| 国产精品九九久久高清| 欧美亚视频在线中文字幕免费| 蜜臀av一区二区精品字幕| 亚洲国产日韩精品久久久久久久| 精新精新国产自在现拍| 国产成人蜜臀av一区二区三| 亚洲国产精品午夜福利在线播放| 中文字幕一二三区在线| 91麻豆产精品久久久久久| 国产精品视频bt天堂| 亚洲精品第一综合久久| 高清中文字幕免费不卡视频 | 亚洲国产午夜高清毛片| 欧美精品人在线观看| 黑人精品xxx一区二区三区| 在线观看国产高清免费不卡色| 91午夜精品福利在线亚洲| 国产av久久久久精东av| 国产一区二区三区日本精品| 在线网址中文字幕在线观看| 青青草精品视频在线播放 | 十八禁一区二区在线播放| 久久精品久久精品久久精品| 亚洲人成电影网站国产精品 | 日本动漫黄h在线观看免费| 91久久国产精品视频| 中文字幕人妻诱惑在线| 日韩亚洲丝袜另类| 黄站午夜福利观看| 亚洲成a人一区二区三区| 欧美人与牲禽动交精品一区| 亚洲图片欧美日韩中文字幕| 国产精品一区尤物| 99久久免费精品二区| 国产中文精品色婷婷综| 亚洲国产精品久久久久秋霞不卡| 色午夜一av男人的天堂| 精品少妇123区| 国产三级在线视频 一区二区三区| 欧美高清观看一区二区三区| 亚洲一区二区免费视频观看| 国产成人av在线网站网址| 中文乱码一区二区视频| 欧美精品老妇一区二区| 视色4se影院在线观看| 亚洲av一级二级三级| 四虎成人精品在线视频| 91亚洲日本aⅴ精品一区二区| 粉嫩av一区二区在线播放免费 | 福利视频一区二区入口| 国产成人精品91| 在线视频午夜国产| 国产精品亚洲精品在线观看 | 天堂不卡一区区在线网| 午夜人妻精品理论片中文字幕| 亚洲欧美综合在线视频| 日韩成人一区二区在线观看 | 久久国产这里有精品视频 | 欧美 自拍 日韩 国产| 中文字幕不卡在线日韩| 手机看片日韩国产| 国产熟人精品一区二区| 中国高清色不卡免费视频| 欧美亚洲日本国产综合网| 香蕉视频一区二区免费看| 日韩中文精品视频| 亚洲欧美日韩久久一区| 91精品网站天堂系列在线播放| 在线中文字幕日韩一区| 操你啦天天免费视频| 人人爽人人澡人人喊| 极品美女一区二区三区| 黄色av三级在线免费观看| 色婷婷影院一区二区乱码| 中文字幕人妻诱惑在线| 在线观看免费日韩av电影| 在线观看美女色网站| 国产日韩精品双片在线观看| 在线麻豆一区国产| 午夜久久福利天堂av| 久久综合久久综合婷婷| 熟女露脸国产一区| 欧美视频一区二区三区四区| 女人高潮内射99精品| 国产h精品在线观看| 久久久久久蜜桃精品| 在线网址中文字幕在线观看| 国产91在线播放9色不卡| 欧美三区,亚洲三区| 国产 日韩 欧美 精品 另类| 国产高清黄色视频网站| 日韩欧美国产制服在线| 国产毛 片久久久久| 少妇人妻无码精品视频APP| 亚洲国产另类综合| 午夜久久久久久久| 欧美精品二区国产| 中文字幕免费精品| 女同一区二区九九| 午夜在线观看的网站| 日韩在线观看视频一区二区三区| 欧美一区二区三区四高清视频| 国产一区亚洲二区三区毛片| 不卡中文字幕永久999| 日韩成人精品免费av| 中文字幕 欧美一区| 午夜xx免费视频| 成人网站色52色在线观看| 亚洲中文字幕va福利| 亚洲中文字幕va福利| 国产中文字幕乱码在线| √最新版天堂资源网在线下载 | 国产三级精品三级观看| 五十路熟女视频一区和二区| 国产成人久久精品蜜臀| 在线天堂av网站 在线免费av天堂| 国产又粗又长又猛又爽又黄视频| 亚洲综合视频在线播放| 美女视频免费区一区二区三| 欧美 国产 在线 观看| 无人区乱码一区二区三区国产| 国产一区二区精品一区| 国内精品久久久久影院优| 亚洲视频播放在线| 亚洲美女高潮久久久久久久| 四虎成人精品一区二区免费网站| 亚洲性色av大片在线播放| 伊人中文字幕综合网| 亚洲中码中文字幕人妻电影| 欧美黑人粗大精品一区| 亚洲中文字幕不卡一区二区三区 | 免费大片黄色国产在线观看| 免费网站日本a级淫片免费看| 日韩亚洲人成网站在线播放| 国产粉嫩一区二区三区| 视频一区 视频二区 在线| 国产精品99久久久| 国产小视频在线观看二区三区 | 高清精品一区二区三区| 日韩av三级成人在线| 国产一区亚洲欧美在线| 青草av久久一区二区三区| 亚洲精麻豆18av| 人妻少妇精品专区性色a∨| 成人黄色av大片在线| 亚洲性感美女福利视频| 国产精品美女99久久久久久| 国产福利片一区二区| 亚洲最大免费av在线播放| 蜜臀视频在线一区二区三区| 一区二区三区内射美女毛片| 亚洲国产日韩制服诱惑丝袜av| 日韩看片一区二区三区| 乱中年女人伦中文字幕久久| 久久久区一区二区三区| 国产精品久久久久密桃噜噜噜 | 亚洲成人黄色手机在线观看| 国产一区二区三区四区五区3d| h片在线观看精品一区| 操美女视频在线观看一区二区| 午夜偷拍的视频久久久免费大全| 蜜99国产欧美久久久精品| 98超碰人人与人人欧美| 日韩三级另类视频| 99视频国产精品| 波多野结衣精品无人区| 国内老熟妇对白xxxxhd| 午夜免费成人福利视频| 久久www成人片免费看| 国产美女视频免费久久不卡| 午夜在线观看的网站| 亚洲中文字幕高清一区| 成人日韩视频网站在线观看| 欧美不卡在线免费视频| 日韩国产激情一区| 三级成年网站在线观看级爱网| 国产精品网在线观看| 精品久久91麻豆| 日韩看片一区二区三区| 四虎成人精品在线视频| 亚洲国产欧美一区点击进入| 视频一区中文字幕亚洲| 又黄又骚又爽国产| 青青久久精品国产| 欧美精品成人a多人在线观看| 精品一区亚洲欧美| 日本高清在线色视频| n满人妻精品一二区| 超碰蜜臀在线一区二区| 不卡免费观看av 免费av观看不卡| 欧美一区不卡在线| 5g免费影院永久天天影院在线| www.在线视频中文字幕| h片在线观看精品一区| 日韩激情视频在线一区二区| 亚洲国产麻豆人人爽人人澡| 91精品亚洲视频在线观看| 久久久亚洲精品va| 国产日韩欧美视频一区二区三区| 亚洲日本∨a中文字幕久久| 中文字幕在线观看视频久| 一级黄片免费观看| 国产精品尹人在线| 国产人妖av一区二区在线观看| 人妻少妇偷人精品视频一区二区| 午夜福利av免费播放| 欧美色妞一区二区在线观看| 黄色的视频一区二区三区| 欧美巨猛xxxx猛交黑人97人| 精品国产区一区二区三在线观看| 99久久久久国产精品免费| 亚洲中文字幕高清一区| 亚洲国产麻豆人人爽人人澡| 亚洲一区二区三区中| 美女又黄又免费网站| 色婷婷久久久wg精品| 亚洲视频欧洲视频在线观看| 亚洲国产成人一区在线| 国产一区二区三区xxxx久久| 国产一区二区啊啊啊在线观看| 级毛片线天内射视视| 国产在线精品观看| 97超级碰碰久久久| 国产午夜污在线观看| 18禁黄国产精品一区二区白浆| 激情婷婷九九综合99| 国产日韩欧美系列一区二区自拍| 给我免费播放毛片| 体内射精一区二区人妻| 四虎影视在线观看2019a 久久久久人妻一区精品 | 日韩欧美综合精品成人在线视频| 日韩激情av在线播出| 国产精品美女久久久久∧v爽| 日韩成人精品免费av| 欧美激情在线网址| 久久精品视频东京热| 少妇高潮喷水久久久免费| 中一区二区在线视频| 噜噜麻豆九九久久| 亚洲国产精品999| 国产精品露脸在线观看| 国产超碰人人做人人爱va九月| 日韩精品久久男女人妻| 国产精品久久久影视| 精品婷婷在线观看| 人人澡人人人人澡人人超碰新| ,日本熟妇中文字幕aⅴ| 水蜜桃精品视频一区二区三区| 国产成人精品午夜在线观看| 成人婷婷综合天堂| 中文字幕在线视频日韩精| 波多野结衣国产av| 99精品国产免费观看视频| 黄色免费在线国产| 国内精品久久久久影院优| 偷窥少妇久久久久久久久| 亚洲色图中文字幕色婷婷| 午夜欧美熟妇一区不卡| 日本精品专区在线观看| 亚洲欧美中文字幕乱码| 亚洲欧美中文字幕乱码| 国产精品九九九九九| 人人做天天爱夜夜| 91在线国产在线一区视频| 神马久久午夜福利| 国产日韩在线观看亚洲精品| 午夜久久久久久久| 伊人色在线综合网| 拍拍国产电影天堂| 亚洲视频久久一区二区三区| 久久精品一中文字幕!| 欧美精品一区二区蜜臀| 亚洲美女视频在线观看黄片| 日韩福利电影在线一区二| 激情视频中文字幕人妻久久久久| 高清中文字幕免费不卡视频| 国产精品视频在这里有精品| 亚洲欧美国产67194| 激情视频中文字幕人妻久久久久| 亚洲欧美综合在线视频| 日韩精品1区2区3区久久 | 欧美久久久久久久黄片| 久久亚洲欧美国产精品| 日韩欧美亚洲一级| 亚洲男人av一区二区三区| 久久国产精品一国产精品金尊 | 国产精品日本一区二区视频 | 欧美日韩视频区一| 2018欧美日韩人妻| 在线不卡中文字幕播放| 日本高清一区二区三区水蜜桃| 亚洲综合日产欧美| 久久精品视频这里免费观看| 欧美性淫爽ww久久久久无| 最新不卡av在线播放| 一区,二区,三区的精品伦理片 | 99riav精品国产| 超碰蜜臀在线一区二区| 欧美 色亚洲一区| 婷婷爽人人爽人人片| 日韩精品欧美视频在线| 精品一区亚洲欧美| 日韩一级美女视频免费观看| 欧美日韩国产一区夜夜| 亚洲不卡一区二区在线播放| av在线免费电影三区四区| 久久婷婷五月综合色精品首页| 中文字幕一页在线| 欧美日韩x8x8视频在线观看| 这里有精品婷婷狠狠狠操 | 久久国产精品六区| 熟妇女人妻丰满少妇中文字幕| 欧美日本人体视频一区| 在线黄色免费网站| 亚洲国产日韩视频在线观看| 91国内精品一区二区| 欧洲三级久久久精品| 黄网站色视频在线观看| 99国产三级精品三级在线专区| 最新中文字幕日本| 欧美人与牲禽动交精品一区| 国产三级在线视频 一区二区三区 久久99热精品免费观看 | 中文字幕日韩一级片在线观看| 成人av网站一区二区三区| 久久国产精品成人av影视 | 91麻豆精品激情 在线观看| 桃花社区视频在线观看完整版| 久久久九九九精品视频| 影视一区二区三区| 国产精品视频久久一区| 日韩在线观看精品| 99在线热这里只精品视频| 国产精品9在线观看| 国内一区二区三区在线视频| 在线不卡不卡一区二区| 国产亚洲欧美专区在线| a中文字幕在线播放| 亚洲欧洲午夜精品| 亚洲综合国产精品视频| 日韩欧美另类片在线观看 | 精品国产区一区二区三在线观看 | 国产精品欧美日韩一区二区| 六月丁香亚洲综合| 国产精品嫩草视频永久网址| 亚洲不卡一级电影观看| 人人澡人人澡人人看欧美| 亚洲成av人片精品久久久久久| 亚洲综合色区中文字幕| 国产精品久久密av| 91人妻国产精品麻豆| 亚洲精麻豆18av| 视频一区二区三区麻豆| 日本超a级片一区二区| 黄色片在线免费观看精品| 在线亚洲天堂色播av电影| 永久免费国产在线观看| 国产精品一区二区三区日日夜夜| 一级少妇一区二区| 亚洲精品成人高清视频| 综合欧美五月婷婷| 国产在线中文字幕视频| 国产又黄又猛又爽又粗| 国产精品一区二区三区日日夜夜| 欧美大片日韩特一级在线观看| 午夜免费啪视频在线观看| 欧美一区二区伦理在线| 久久66热re国产毛片基地| 波多野结衣国产av| 99r视频这里只有精品| 国产看片一区二区三区| 一区二区三区亚洲一区二区三区| 欧美激情视频精品一区二区| 亚洲最大网站在线| 伊人一区二区三区四区黄片 | 91精品在线免费播放视频| 成年人视频在线观看网站| 欧美淫片a级免费| 91亚洲日本aⅴ精品一区二区| 亚欧成人精品一区二区| 日韩欧美一区二区年费| 国产一区二区三区xxxx久久| 91精品国产影片一区二区| 亚洲另类图片区小说区| 日本中文字幕黄色影院| 中文字幕在线观看视频久| 国产视频一区二区免费在线播放| 欧美黄色三级一区| 午夜精品久久久久久xyz| 久久国产精品免费一区六九堂 | 欧美一卡二卡一国产免费| 中文字幕免费三级| 亚洲欧洲日韩福利片| 国产精品一区二区三区全部免费 | 在线观看99精品视频| 亚洲欧美综合在线不卡| 国产亚洲精品拍拍拍拍拍| 久久久久黄色精品免费看| 人人澡人人人人澡人人超碰新| 国产亚洲av毛卡片av| 精品国产手机一二三区| 天堂资源在线观看亚洲av| 五十路熟女视频一区和二区 | 欧美精品久久99久久在免费线 | 日本一区二区三区视频在线看| 国产在线精品观看| 中文字幕成人精品久久不卡| 精品亚洲永久免费午夜不卡| 久久伊人不卡了精品酒店| 91精品久久久久久久久久中文| 久久国产精品老熟女| 日韩精品女优一区二区三区| 成人在线观看亚洲第一视频| 少妇人妻综合久久中文字幕蜜| 日韩毛片高清免费观看| 激情免费视频一区二区三区| 国产又大猛又大粗av一区| 欧美不卡顿一区二区| 免费乱理伦片奇优影院| 日韩亚洲人成网站在线播放| 久久国产视频一区二区| 中文字幕在线观看视频第一页| 国内少妇人妻偷人精品解说| 精品国产网站在线观看91| 欧美综合不卡顿视频在线观看| av中文字幕在线观看性| 一区二区三区精品国产欧美| 国产国产精品一区二区| 日本精品电影一区二区| 欧美亚洲日本三区| 国产午夜精品一区二区三区欧美| 欧美 亚洲 精品 麻豆| 国产美女网站一区二区| 久久99国产66精品久久| 日本中文字幕黄色影院| 2020最新国产自产精品| www.com亚洲| 久久婷婷五月综合色精品首页| 国产快播一区二区三区在线看| 国产呦精品一区二区三区网站| 亚洲乱码av一区二区蜜桃| 久久久五月婷熟女| 亚洲图片欧美日韩中文字幕| 手机看片1024久久| 午夜片国内精彩视频一区二区| 成人亚洲a片v一区二区三区蜜臀| 欧美精品一区二区蜜臀| 国产h精品在线观看| 正在播放老肥熟妇露脸| 色综合色综合狠狠天天| 五月婷欧美国产中文字幕| av在线一区二区免费播放| 人妻 中文字幕 精品| 国产人成精品午夜在线观看| 国产情色视频在线免费观看| 国产精品19禁在线观看2021| 无码专区男人本色| 亚洲jizzjizz在线播放久| 国产精品美女久久久久∧v爽| 欧美人与禽猛交乱配视频| 男人的天堂在线视频99999| 国产一区欧美亚洲第一页| 人人草人人草人人草| 99精品视频免费在线观看| 日本日本一本色道网站| 亚洲免费欧美在线观看| 久久精品久久精品久久精品| 国产成人8x人网站在线视频| 日韩欧美成人午夜福利| 国产嫩草一区二区三区在线观看| 久久中文字幕中出| 日韩精品中文字幕人妻免费电影| 一区二三区四区乱码在线| 国产理论一区二区电影| 综合久久二区免费| 亚洲中文字幕不卡一区二区三区| 激情婷婷九九综合99| 樱花yy私人在线影院| 日本美女久久一区二区| 国产字幕中文在线视频| 日韩不卡欧美在线一区| 蜜臀视频在线一区二区三区| 亚洲v韩国v欧美v精品| 欧美精品人在线观看| 国产又色又爽视频在线观看| 日韩二区中文字幕在线| 亚洲国产日韩视频在线观看| www.成人a视频在线观看| 欧洲日韩中文在线| 中文字幕一区二区在线不卡视频| 国产亚洲欧美一区二区三区在线观看| 一区二区三区国产精品自拍| 久久99久久精品| 665566综合中文字幕在线| 久久久精品妇女99| 狠狠色丁香婷婷久久综合考虑| 91久久久色在线观看| 在线观看成人美女| 亚洲人禽杂交av片久久| 国产av巨作久久久久久久| 茄子在线资源在线观看视频| 2021最新精品国自产拍视频| 自拍欧美日韩亚洲| 在线视频观看免费亚洲| av资源在线免费观看| 久久国产精品久久99| 色婷婷久久久wg精品| 俺也色亚洲色图中文字幕| 我要看黄色1级片| 国产探花在线精品一区二区| 亚洲视频在线观看.| 亚洲av鲁丝一区 在线观看一区二区不卡中文av | 免费观看一区二区三区视频| 午夜免费久久久久久| 国产精品日韩久久久久| 人人妻免费在线视频| 日本免费在线观看视频大全| 日韩欧美国产制服在线| 麻豆影院 一区二区三区| 国产精品综合色区在线观看不| 国产日韩欧美在线精品| 欧美亚洲日本综合精品在线| 国产精品嫩模高潮在线观看| 日韩人妻欧美人妻| 久久亚洲欧美一二三区| 国产福利手机在线| 手机看片日韩国产| 精品国产成人综合| 亚洲中文字幕av免费在线观看| 久久久久久综合亚洲| 99在线观看视频婷婷| 精品人妻中文日本| 国产成人午夜不卡在线视频| 成人欧美一区二区三区视频xxx| 久久中文字幕福利| 性欧美性另类巨大| 99精品久久久久中文字幕人妻| 亚洲国产精品久久久久秋霞不卡| 日本在线激情免费播放刺激不卡| 欧美精品二区国产| 国产亚洲av天天澡人人爽| 久久中文字幕福利| 国产区中文字幕在线| 国产孕妇孕交视频在线观看| 亚洲综合在线天堂在线观看| 国产精品黄色av电影网| 蜜臀午夜精品一区二区| 深夜国产一区二区三区在线看| 日韩视频在线播放网站免费| 日韩欧美一区二区三区永久免费| 久久99精品久久久久婷| 亚洲人人爽从人人澡起碰av| 黄色av三级在线免费观看| 亚洲人禽杂交av片久久| 拍拍国产电影天堂| 国产婷婷91在线精品| 亚欧洲精品在线视频| 这里有精品婷婷狠狠狠操| 人人妻人人澡人人爽欧美视频| 婷婷六月久久综合丁香76| 国产精品久久久一区二区视频| 日本 亚洲 黄色 免费| 欧美亚洲一级片在线观看| 亚洲成人精品字幕| 久久久久最新亚洲av| av网址在线免费观看| 一区二区午夜在线| 韩国三级国产精品一区| 亚洲精品第一国产| 国产高清吃奶成免费视频网站| 精品美女极品美女在线观看网站| 午夜人妻精品理论片中文字幕| 国产精品偷乱视频免费看| 欧美亚视频在线中文字幕免费| 国产伊人精品99| 四虎影在线在永久观看| 男女国产视频午夜| 国产精品最新乱视频二区| 欧洲视频一区二区三区在线观看| 午夜精品久久久久久xyz| 伊人精品久久久久| 黄色的视频一区二区三区| 国产精品揄拍一区二区久久 | 欧美激情另类一区二区| 国内精品自产视频在线播放| 日韩毛片视频在线| 这里有精品婷婷狠狠狠操| 日韩欧美一区二区在线观看| 91精品国产91久久网站| 女同一区二区三区| 日韩欧美制服人妻中文字幕| 国产精品久久久一区二区视频| 九九视频在线观看6伊人| 19久久久国产一区二区| 久久久一本精品99久久k精品66| 看国产日韩av免费| 国产成人v爽在线免播放观看| 手机在线观看视频欧美日韩| 视频 福利 在线 午夜| 中文字幕区二区三| 欧洲在线观看网站| 天堂最新一区二区三区| 拍拍国产电影天堂| 国产一区二区三区xxxx久久| 欧美激情 另类综合| 精品国产福利视频| 亚洲aⅴ国产av综合av| 亚洲中文字幕永码永久在线| 日韩av片无码一区二区不卡| 国产又色又爽视频在线观看| 手机看片1024一区二区三区| 国产乱国产乱300精品| 美女视频十八禁免费在线观看| 体内射精一区二区人妻| 亚洲一区二区电影在线| 日韩欧美中文国产| 亚洲超碰中文字幕在线| 亚洲美女视频在线观看黄片| 小泽玛利亚久久一区二区三区| 欧美日韩大尺度一区二区| 乱中年女人伦av一区二区 | 精品欧美一区二区三区播放| 伊人久久大香线蕉aⅴ色| 日韩av电影中文字幕不卡| 观看亚洲免费视频网站大全| 黄色一区二区日韩| 亚洲黄色美女免费网站| 91亚洲精品免费在线观看| 欧洲在线观看网站| 96精品国产高清在线看入口| 丁香五六婷婷久久| 亚洲福利 中文字幕| 国产成人精品午夜在线观看| 国产亚洲丝袜av在线播放| 人妻中文字幕免费视频| 中文字幕有码视频看看| 一本色道久久爱手机版下载 | 国产成人av片在线| 亚洲欧美日本一卡二卡三卡| 午夜福利av免费播放| 在线中文字幕乱码六| 亚洲美女视频综合| 国产suv精品一区二区12| 亚洲国产a免费一区| 六月丁香婷婷色狠狠久久| 国产精品最新乱视频二区| 九一精品一区二区三区| 欧美一区三区四区五区| 日本精品一区二区三区在线观看| 午夜dj国产精品| 中文字幕视频人妻| 中文字幕乱码人妻系列| 国产女女同无遮挡互慰| 国产亚洲av美女网站在线看| 久久久婷婷综合亚洲av| 激情亚洲熟女视频狠狠操| 亚洲日本乱码视频在线观看| 精品国产丝袜美腿| 日本免费在线观看视频大全| 99久久精品免费看国产免费软件| 国产白嫩白浆无套内射在线观看| 国产精品一区二区三区有码| 日本视频在线视频一区二区| 久久婷五月综合网| 精品久久久久久人妻无| 日本美女黄p在线观看| 国产又粗又猛又爽又黄又大| 18禁黄国产精品一区二区白浆| 久久国产精品视频免费播放| 精品性成人免费视频观看| 精品久久久久久中文字幕2017 | 亚洲成v人片一区二区| 日本女黑人中文字幕永久在线| 亚洲乱码国产乱码精品精网站| 亚洲av成人在线播放| 中文字幕日韩二区| 91最新精品国产欧美| 免费播放毛片视频| 日本视频在线观看精品| 亚洲视频在线观看免费网站| 欧美a级片一区二区| 欧美人妻少妇精品久久久| 国产福利小视频免费在线观看| 成人在线视频观看日韩| 久久免费一级裸片| 日韩欧美国产免费看清风阁| 亚洲天堂影院二区在线看| 色偷偷人人澡久久超| 一级少妇一区二区| 欧美一区二区在线午夜| 久久久久国产美女网站| 欧美日韩在线观看视频平台| 黄网站色视频在线观看| 毛毛片一区二区三区费观看| 精品a∨视频在线观看一区二区| 精品视频中文字幕在线| 成a人片亚洲日本久久| 极品久久国产av 久久国产极品av| 天天久久狠狠夜夜| 精品99久久精品| 亚洲成人av在线播放观看| 日韩一区二区亚洲| 欧美精品一区在线免费观看| 中文国产成人精品久| 噜噜麻豆九九久久| 久久99精品久久久久婷| 亚洲国产成人女人| 亚洲男人第一av天堂| av成人一区二区三区| 不卡中文字幕视频在线| 午夜免费久久久久久| 字幕乱码日韩在线观看| a一区二区三区日本电影| 精品国产福利一区二区在线| 国产亚洲激情片免费观看| 国产91在线播放9色不卡| 国产中文字幕久操| 久久精品视频东京热| 中文字幕亚欧美在线视频 | 久久久精品欧美综合| 亚洲第一视频一区二区三区| 日韩欧美在线视频第一页| 日本精品人妻久久久| 粉嫩极品国产在线2020| 日本熟女一区,二区,三区| 91精品视频免费在线观看的| 久久成人欧美日韩| 亚洲国产综合久久精品| 国产成人精品免高潮在线观看| 黄片污污视频免费在线观看| 亚洲精品国产96| 欧洲一级欧洲三级在线观看| 一本一本久久a久久综合精品| 99九九精品视频| 国产婷婷91在线精品| 天天一区二区三区av| 欧美 亚洲,视频一区| 亚洲综合国产精品视频| 91九色蝌蚪在线视频观看| 欧美成人免费久久| 国产又粗又猛又大爽又黄| av福利一区在线看| 18av国产一区在线观看| 欧美国产综合欧美视亚洲码国产| 亚洲 综合 校园 欧美小说| 亚洲天堂网欧美在线观看| 乱码乱淫人妻少妇av| 国产精品国产一级a| 综合欧美五月婷婷| 日韩欧美中文国产| 中文字幕在线观看视频在线观看| av成人一区二区三区| 欧美亚洲日本三区| 国产麻豆一区二区三区视频大全| 在线视频欧美精品一区二区| 人妻少妇精品视频在线免费观看| 亚洲国产精品人人做人人爱j | av免费在线一区二区不卡| 国产成人8x人网站在线视频| 色综久久久久综合欧美| 亚洲精品日韩综合观看成人91| 九九热这里只有精品6| 亚洲欧美日韩,综合色| 99精品人妻专区在线视频| 蜜臀久久精品久久久久打不开| 久久麻豆亚洲av 久久久久亚洲av大片| 亚洲图片欧美日韩中文字幕| 欧美日韩激情视频免费观看| 91香蕉视频在线观看一区二区| 水蜜桃精品视频一区二区三区| 精品国产成人xxxx三上悠亚| 国产精品三级三级三级| 性感美女污污福利网站在线看| 中文字幕日韩第一精品| 哦美激情中文字幕亚洲| 亚洲欧美日韩一区天堂| yw尤物亚洲国产一区| 中文字幕亚洲免费视频| 日韩 欧美 国产 婷婷在线| 国产激情美女视频| 999久久久免费看| 国产suv精品一区二区四五| 国产人成精品午夜在线观看| 男人的天堂一级片| 秋霞av鲁丝一区二区三区| 欧美一级一片在线观看| 日韩国产在线观看不卡| 一级黄色大片中文字幕| 亚洲欧美日韩无线码| 天天一区二区三区av| 成人h视频一区二区| 国产白嫩白浆无套内射在线观看 | 最新最好看的高清中文字幕视频 | 欧美一区二区三区四高清视频| 精品国产福利视频| 亚洲人禽杂交av片久久 | 国产亚洲欧美专区在线| 中文字幕在线欧美亚洲青青草原| 色婷婷在线观看成人免费公开| 精品乱码一区二区三区不卡视频| 久久久尹人香蕉网| 午夜中文字幕日韩综合| 久久国产精品六区| 美女aaaa黄色一级片免费的| 国产日韩精品在线一区二区| 在线观看永久免费av| 色婷婷影院一区二区乱码| 永久黄网站色视频免费网站| 丰满女人又爽又紧又丰满| 嫩国产精品嫩草影院久久久久 | 国产尤物一区二区免费进| 午夜伦理在线一区| 欧美精品一区二区三区欧美精品| 热99视频只有这里有精品| 国产亚洲精品18禁91九色| 亚洲黄色美女免费网站| 国产区日韩区在线观看| 久久www免费人成看片入口| 亚洲不卡中文字幕无码| 在线一区二区三区亚洲| 国产av一区二区6| 19久久久国产一区二区| 国产三级在线视频 一区二区三区 久久99热精品免费观看 | 国产亚洲自愉自愉| 九一精品国产综合久久久久久久| 91久久久色在线观看| 中文av在线人妻 国产日韩网站| 国产成av不卡在线观看| 亚洲欧美国产中文日韩| 手机在线免费看中文字幕av| 中文字幕对少妇高潮| 国产福利一区视频二区| 欧洲精品乱码久久久久久按摩 | 国产一区欧美亚洲第一页| 国产精品国产精品| 国产熟女一区二区精品视频| 香蕉社区一区二区三区| 日本二区三区视频| 91最新精品国产欧美| 人妻中文字幕免费视频| 久久夜色撩人精品国产| 精品亚洲不卡一区二区三区四区| 国产一区自拍视频免费在线观看 | hs视频在线观看| 亚洲欧洲日本在线观看视频| 日产中文字幕一码| 国产欧美在线视频二区三区| 欧美黄色一区二区三区| 成人一区二区网站| 亚洲国产日韩视频二区| 在线观看中文字幕亚洲| 国产丝袜91久久久久久久久| 亚洲精品v天堂中文字幕| 亚洲精品视频导航| 黄色片在线免费观看精品| 熟女少妇中文自拍欧美亚洲激情| 色偷偷人人澡久久超| 国产精品福利视频合集| 国产丶亚洲丶欧美综合| 免费看的小黄片视频| 亚洲最大的av免费网站| 中文字幕高清在线播放第一页| 日本一本不卡在线观看| 精品三级在线播放| 久久中文字幕视频网站| 国产免费久久精品99re香蕉| 狠狠躁天天躁夜夜添人人| 在线观看精品视频网站| 欧美人妻 自拍 第一页| 日本人妻中文久久| 美女又黄又免费网站| 色男人天堂网免费在线视频| 久久伊人不卡了精品酒店| 精品国产一区二区三区四区四| 99影视在线视频免费观看| xxxxwww69| 丰满无码人妻熟妇无码区| 夜夜夜夜一区二区| 午夜伦理在线一区| 日韩视频免费看第一区第二区| 手机在线欧美日韩精品| 亚洲国产一区二区三| 日本一区二区三区人体| 日韩网址制服诱惑中文字幕| 澳门精品久久国产| 中日韩欧美一区二区视频| 弄得少妇高潮一区二区网站| 精品久久久久久国产中文| 欧美人与牲禽动交精品一区| 蜜臀久久精品久久久久打不开| 午夜福利精品影院| 亚洲欧美卡通武侠古典偷拍| 日韩理论亚洲精品| 亚洲美女中文字幕在线视频| 美女最超碰免费观看| 中文字幕第5页在线视频| 国产精品久久久一区二区视频| 国产三级黄片一区二区三区| 亚洲av综合色在线| 亚洲国产精品狗做人人爽| 亚洲国产精品午夜福利在线播放 | 欧美淫片a级免费| 精品国产拍国产天天人| 欧美少妇内射bb| 久久综合色吧88| 四虎在线中文字幕一区二区 | 可以在线看的av网站| 熟女少妇精品一区二区| 青青青青青国产免费观看| 亚洲成a人一区二区三区| 日韩亚洲国产av影片| 女同一区二区九九| 国产成人av高清在线观看| 日本aⅴ一二区在线观看| 日韩欧美在线视频第一页| 人妻 中文字幕 精品| 免费观看黄色美女网站| 久久精品99久久久久久久久久| 午夜视频在线观看黄片| 欧美黄色一区二区三区| 午夜免费成人福利视频| 亚洲黄色大片免费的观看| 国产成人精品亚洲 91| 黄色av免费日韩一区二区| 精品网站在线免费观看| 18av国产一区在线观看| 国产日韩在线观看亚洲| 欧美福利一区二区三区| 久久国产深夜福利| 国产高潮流白浆视频在线观看| 人妻乱人伦中文在线| 亚洲国产一区二区电影| 欧美性少妇xxxx极品高清hd| 女同一区二区三区| 人妻中文字幕免费视频| 99精品国产免费观看视频| 亚洲av成人久久 亚洲网色 | 国产与激情一区av| 欧美福利一区二区三区| 播放中文字幕二区| 日本在线精品中文视频| 成人综合午夜一区二区| 亚洲男人天堂.av免费观看| 国产精品一级片在线观看| 久久av 中文字幕| 手机在线不卡一区二区免费视频| 精品乱码一区二区三区不卡视频| 日韩.欧美.国产.无需播放器| 欧美日韩久久精点| 亚洲综合在线天堂在线观看| 久久久九九九精品视频| 中文字幕 欧美一区| 精品蜜桃久久久久| av天堂一区二区三区精品| 亚洲精品网站免费观看视频| 色偷偷人人澡久久超| 99视频国产精品| 好吊妞一区二区三区视频| 欧美日韩精品亚洲欧美| 中文字幕偷拍一区| 久久天天躁日日躁狠狠躁| 午夜福利国产成人a∨在线观看| 亚洲欧美中文字幕乱码| 欧美日韩精品不卡播放视频| 亚洲中码中文字幕人妻电影| 国内揄拍高清国内精品对白| 亚洲一区二区三区 视频| 精品国自产拍在线观看| 熟女aⅴ一区二区三区| 亚洲午夜18毛片在线看| 免费乱理伦片奇优影院| 亚洲 自拍 另类 中文字幕| 美女网黄视频在线观看不卡| 国产成人aⅴ在线免播放观看| 精品视频中文字幕在线观看 | 国产69精品久久久久观看| 成人特级毛片69免费观看| 欧美 偷拍 一区二区| 黄色在线观看免费一区二区三区| 一本一本久久a久久精品综合麻豆 国产久精品久久久久久久影视 | 日韩亚洲av曰韩乱码| 欧美精品二区国产| 日本 亚洲 黄色 免费| 91久久精品日日躁夜夜躁91| 少妇无套内射呻吟高潮久久久| 99久久精品人妻二区| 亚洲第一第二区精品| 国产一级片免费观看| 91精品一区二区| 久久精品 国产高清| 国产一区二区三区免费网站| 国产日本欧美在线看| 99re中文字幕亚洲| 国产 欧美日韩视频区| 美日韩在线调教变态av| 国产精品视频bt天堂| 精品国产免费第一区| 亚洲最大欧美日韩色| 看片网址av中文字幕在线观看| 亚洲欧美在线一区中文字幕 | 19久久久国产一区二区| 九一精品国产综合久久久久久久| 国产成人强伦免费视频网站| 国产中文字幕久操| 欧美亚洲精品日韩精品| 国产麻豆一区二区三区视频| 中文字幕不卡三区视频| 亚洲国产精品自产拍在线播放| 午夜影视网站在线观看| 久久免费一级裸片| 在线观看国产字幕乱码a| 免费观看在线不卡毛片| 在线观看成人日韩视频| 九九热这里只有国产精品视频| 97视频精品全国在线观看| 国产91av免费在线| 中文字幕乱码人妻系列| 黄色片一区二区三| 一区二区福利在线视频| 国产av一区二区三区五区| 免费一区二区三区四区| 亚洲av日韩av天堂久久麻豆| 精品国产呻吟久久av| 永久免费av永久在线观看| 日韩人妻欧美人妻| 国产小视频在线观看二区三区| 欧美国产精品bb大区久久| 久久综合亚洲国产精品| 在线一区二区三区高清视频 | 成a人片亚洲日本久久| 欧美一区三区四区五区| 亚洲一区二区三区 视频| 日本一区二区三区免费区| 免费播放中文字幕| 久久久久久久性潮| 视频免费观看一区二区| 国产激情av在线播放| 一区二区欧美精品一区| 福利片网站视频在线观看| 国产日韩精品aⅴ一区二区| 中文字幕日本乱交| 国产一区亚洲欧美在线| 香蕉社区一区二区三区| 精品国产一区二区三区四区四| 91久久精品日日躁夜夜躁91| 麻豆蜜桃一区二区三区| 在线视频 日韩 欧美 一区| 99国产三级精品三级在线专区| 日本一区二区三区日本视频| 亚洲视频精品一区二区三区| 日本免费不卡中文字幕 | JAPANESE日本熟妇伦M0M| 黄色av免费日韩一区二区 | 日韩香蕉国产一区二区三区| 免费在线亚洲成人| 日韩不卡中文在线视频网站| 日韩人妻无码精品久久久不卡 | 天堂在线观看最新av| 乱码日韩中文字幕| 三级在线观看播放国产精品久| 高清国产激情视频在线观看| 午夜久久一二三区| 丰满少妇熟乱xxxxx视频 | 国产精品久久人妻互换| 亚洲精品福利三区| 毛片无遮挡高潮免费| 日韩乱码av一区二区| 日韩精品欧美高清人妻| 中文字幕对少妇高潮| 国产熟女福利精品最新| 国产精品精品久久久久久潘金莲| 亚洲中文字幕永码永久在线| 国产 欧美日韩视频区| 日日骚国产欧美一区二区| 精品久久综合1区2区3区| 国产精品123区| 日韩精品一区二区三区久久| 国产人成精品午夜在线观看| 日本强乱中文字幕在线播放| 宅男噜噜66国产精品观看| 国产亚洲成人av在线麻豆| 日本欧美一区二区视频在线观看| 福利视频一区二区入口| 在线私拍国产福利精品| 亚洲av 免费在线| 亚洲天堂无码高潮激情视频| 欧美大片日韩特一级在线观看| 好吊视频一区二区三区四区| 高清中文字幕免费不卡视频| 黄色av免费日韩一区二区| 深夜成人福利久久| 中文字幕久久精品波多野结百度| 盗摄偷拍一区二区三区| 欧美精品不卡在线| 国产精品久久人妻互换| 五十路熟女视频一区和二区| 使劲快高潮了国语对白在线| 欧美性少妇xxxx极品高清hd| √天堂中文www官网在线| 给我免费播放毛片| 国产 欧美精品 字幕| 亚洲精品成人在线免费| 国产高清一区在线| 亚洲成人免费播放免费播放| 亚洲精品成人在线免费| 亚洲av网站在线免费| 亚洲成人日韩欧美伊人一区 | 中文字幕第一在线观看视频| 人妻中文字幕在线四区| 小明永久中文字幕| 蜜乳一区二区视频在线观看| 欧美黄色国产精品| 99国产综合亚洲精品| 亚洲开心网伊人久久国产精品 | 伊人中文字幕综合网| 久久久久久久av| 日韩欧美综合精品成人在线视频| 亚洲人禽杂交av片久久 | 亚洲av网站网址在线观看| 四虎影视在线观看2019a 久久久久人妻一区精品| 国产成人综合婷婷| 不卡中文字幕视频在线| av在线中文字幕天堂| 欧洲二区在线观看| 日韩欧美国产综合| 亚洲国产另类精品视频| 精品人妻中文字幕无码二区三区| 欧美日韩国产三级一区二区三区| 久久国产精品免费一区二区三区| xxx黄片在线看| 美女黄色在线观看一区| 茄子视频国产在线观看| 日韩免费观看免费视频网站| 亚洲区另类春色综合小说| 亚洲天天做夜夜做天天欢人人| 日本少妇熟女二区三区| 国产福利视频免费在线观看| 国产成人a一区二区三区| 中文字幕在线乱码观看av| 日本黄色视频不卡一区二区| JULIA手机在线观看精品 国产福利精品av综合导导航 | 一区二区三区av在线网| 在线黄色免费网站| 99人人爽人人妻人人澡| 中文字幕亚洲国产一区| 亚洲美女中文字幕在线视频| 午夜福利国产成人a∨在线观看| 亚洲一区三级视频| 亚洲图片欧美日韩中文字幕| 久久久久中文字幕第一页| 美女成人免费视频观看| 少妇热一区二区三区| 久久99精品久久久久婷| 精品一区少妇视频| 国产老女人精品一区二区三区| 欧美A级AⅤ在线播放| 精品一区二区久久人人爽| 日本国产成人黄网站| 亚洲精品国产精品乱| 在线不卡中文字幕播放| 成人欧美一区二区三区视频xxx| 国产又黄又猛又粗又爽的视频边| 欧美日韩在线观看视频平台| 欧美成人免费网站在线观看| 一级欧美大片免费网站| 看片网址av中文字幕在线观看| 欧美在线亚洲国产免m观看| 欧洲一级欧洲三级在线观看| 天堂av在线成人 天堂成人av在线| 最新中文字幕日本| 免费观看日本在线观看视频| 欧美日韩大尺度一区二区| 国产精品久久免费成年大片| 亚洲成a人一区二区三区| 2019年中文字幕久久| 日韩欧美一区视频| 日韩av免费在线高清观看| 日本高清动作片www欧美| 日韩欧美国产制服在线| 欧美在线中文字幕不卡| 18av国产一区在线观看| 免费乱理伦片奇优影院| 老头亚洲黄色中文字幕| 国产网红在线主播福利96| 欧美淫片a级免费| 中文字幕精品日韩综合| 好看的中文字幕第一区| 国产精品123区| 中文字幕乱码电影视频| 熟女诱惑中文字幕| 影视精品国产综合| 久久精品国产亚洲aⅴ性色| 欧美日本最新在线一区视频 | 日本二区三区视频网站| 亚洲国产日韩视频二区| 中文字幕久久综合网| 国产丝袜一区二区在线观看| 欧美日韩亚洲国产视频| 日本欧美在线观看视频一区| 99精品中文字幕视频| 成人看片在线无限看免费视频 | 日韩欧美制服人妻中文字幕| 人人澡人人澡人人看欧美| av福利一区在线看| 中文字幕一区二区三区精品| 国产综合欧美日韩精品| 国产av成人中文字幕| 中文字幕日韩一级片在线观看| av免费国产在线播放| 国产精品亚洲精品在线观看| 久久天天躁日日躁狠狠躁| 国产精品91在线| 国产精品天天在线观看| 欧美xxx在线观看| 国产精品日韩久久久久| 乱人伦中文无码视频| 久久av一区二区三区软件| 国产精品一区尤物| 亚洲+中文字幕+人妻| 亚洲熟妇无码av另类vr影视| 丰满人妻日韩一二三区不卡| 亚洲av网站网址在线观看| 欧美成人中文字幕视频网站| 亚洲人成色77777在线观看大战| 亚洲熟妇av一区二区三区漫无| 青青久久精品国产| 国产在线观看高清不卡的av | 亚洲综合欧美精品| 在线观看免费不卡小黄片| 亚洲综合国产精品视频| 亚洲成色www久久网站不卡| 中文字幕精品亚洲人在线| 中文字幕在线精品乱码麻豆| 国产丝袜美女一区二区三区| 天天久久狠狠夜夜| 国产一区二区三区新网址 | 中文字幕综合在线观看~| 欧美一级视频在线观看欧美| 国产男女爱视频在线观看| 亚洲日本午夜一区二区| 久久中文字幕福利| 日韩一区二区精品视频在线播放| 成人在线观看一区三区| 偷国产乱人伦偷精品视频香蕉| 人妻中文字幕顶级欧美熟妇高清| 国产精品高潮呻吟久久久久久| 精品国产乱码久久久久久公司| 精品四虎免费观看国产高清| 国产丝袜一区二区在线观看| 日本在线观看精品视频| 5g免费影院永久天天影院在线 | 国产精品四虎影视| 色狠狠一区二区三区熟| 欧美一区二区在线午夜| 日韩欧美中文国产| 91精品视频免费在线观看的| 在线中文字幕乱码六| 不卡色老大久久综合网| 国产精品福利资源导航| 亚洲天堂无码高潮激情视频| 正在播放午夜福利合集| 中文字幕不卡三区视频| 国产v精品欧美精品v日韩| 激情五月综合91| 九九热这里只有精品视频少妇| 久久成人福利网站| 一级欧美大片免费网站| 亚洲av综合不卡一区| 一区二区三区视频日韩| 国产乱码一区二区三区咪咪爱| 久久综合国产精品| av福利一区二区三区| 人妻少妇精品97| 国产精品91在线| 亚洲一区精品成人aa| 黄色av三级在线免费观看| 精品日韩久久久久久久| 亚洲一区精品成人aa| 亚洲欧美综合在线不卡| 亚洲欧美卡通武侠古典偷拍| 久久国内一区二区| 日韩欧美国产制服在线| 天堂无码人妻精品av一区| 不卡在线观看免费黄片视频| 亚国产成人精品久久久国产| 国产嫩草一区二区三区在线观看| 亚洲人成电影网站国产精品| 五月婷欧美国产中文字幕| 开心五月综合久久亚洲| 欧洲一区二区视频免费在线观看| 中文字幕在线观看视频第一页| 一级片在线免费观看不卡| 蜜臀av一区二区精品字幕| 亚洲国产三级不卡| 亚洲欧美人妻字幕| 亚洲av啊啊啊在线观看| 九九精品国产一区| 视频在线免费观看亚洲| 亚洲国产麻豆人人爽人人澡| 欧美成人生活视频在线观看| 亚洲天堂一二三四区av| 99影视在线视频免费观看| 欧美中文字幕6666| 国产亚洲美女久久久久久男同| 亚洲观看在线www| 国产精品久久久久1卡2卡| 欧美一区二区三区视频区| 黄片一级欧美日韩一区二区| 中文字幕一区二区在线不卡视频| 亚洲精品aⅴ中文字幕| 不卡中文字幕永久999| 国产欧美自拍他拍在线观看| 国产精品永久免费视频| 亚洲精品国偷拍自产在线观看蜜臀| 久久久五月综合狠狠| 天堂不卡一区区在线网| 视频一区中文字幕亚洲| 久久伊人不卡了精品酒店| 男女成人亚洲精91品在线| 成人在线一区二区网站| 久久婷婷五月综合色精品首页 | 亚洲综合色区中文字幕| 国产成人精品午夜在线观看| 欧美一级香蕉毛片在线看| 中文字幕中文字幕日韩一区| 成人少妇精品一区二区| 欧美内射精品在线观看| 亚洲午夜18毛片在线看| 肉丝精品一区在线观看| 国产精品特级毛片一区二区三区| 成人看片在线无限看免费视频| 欧美亚洲色图一区二区| 粉嫩极品国产在线2020| 亚洲第一页第二页在线播放视频| 国产日产精品一区二区三区| 国产亚洲av毛卡片av| 国产精品一区二区久久| 日韩欧美综合一区| 亚洲乱码卡一卡二卡新区中国| 亚洲av一级二级三级| 亚洲综合视频二区| 国产亚洲自愉自愉| 人人爽人人澡人人喊| 久久国产精品中国久久| 女女在线观看大全网站免费| 国产av高清精品久久| 一区二区三区国产视频| 国产精品19禁在线观看2021| 日韩精品中文字幕人妻免费电影| 五月天婷婷缴情五月免费观看| 99视频国产精品| 亚洲 欧洲视频免费| 中文字幕日韩综合久久| 中文字幕一页在线| 欧洲亚洲国产av性色| 91久久久色在线观看| 精品无人妻一区二区三区9| 日韩91麻豆精品视频在线观看 | 日本美女久久一区二区| 中国美女免费黄片视频| 91精品久久久久亚洲国产| 亚洲欧洲国产综合专区www| 亚洲中文字幕动漫在线观看| 中文一区二区三区人妻| 99精品国产免费观看视频| 国产精品毛片久久久久久妇女| 精品亚洲视频欧美| 蜜臀视频一区三区| 国产日本在线欧美| 欧美亚洲精品日韩精品| 中文字幕av免费专区资源| 盗摄偷拍一区二区三区| 亚洲成av片中文字幕在线观看| 国产精品第一区第二区第三区| 欧洲欧美人成视频在线观看| 久久久久夜夜夜国产精品| 老熟女无套内射国产视频 | 免费乱理伦片奇优影院| 成人免费视频福利网| 美女aaaa黄色一级片免费的| 国产欧美自拍他拍在线观看| 国产国产精品一区二区| 国产在线观看高清不卡的av| 字幕中文日韩欧美| 69av在线视频| 亚洲福利午夜视频| 免费网站一区二区在线观看| 日韩欧美三级在线观看a| 亚洲精品aⅴ中文字幕| 国产成av不卡在线观看| 最新的亚洲不卡的一区在线| 人妻 少妇 中文字幕| 99在线观看视频婷婷| 亚洲中文欧av不卡| 欧乱色国产精品兔费视频| 伊人久久狠狠综合| 91在线播放国产精品| 国产成人一区二怕在线观看| 日本国产成人黄网站| 国产成人精品一区二三区2022 | 久久天堂夜夜一本婷婷喷水| 久久综合国产精品| 日韩人妻中文字幕日日骚| 国产成人精品国内自产拍视频| 99热这里只有精品免费在线| 国产性色精品一区二区| 精品中文字幕不卡在线观看| 亚洲国产综合久久精品| 天天去色综合久久婷婷| 99久久精品人妻二区| 女同一区二区九九| 一区,二区,三区的精品伦理片| 久久999国产高清精品| 欧美精品不卡一区二区视频| 精品三级在线播放| a∨色狠狠一区二区三区| 欧美精品日日鲁夜夜添| 久久久久久综合亚洲| 国产一级黄片在线播放视频| 国产女同性恋一区二区av| 美女黄色在线观看一区| 精品无人妻一区二区三区9 | 伊人成人在线免费观看视频| 欧美综合视频一区二区| 久久久精品美女mm久久久| 91中文字幕视频在线永久观看| 在线网址中文字幕在线观看| 使劲快高潮了国语对白在线 | 成人免费黄色免费| 午夜久久久久久亚洲欧美| 在线网址中文字幕在线观看| 色欲亚洲欧美日韩精品自拍| 在线观看国产高清免费不卡色 | 日本午夜少妇福利电影在线观看| 国产美女福利最新网址在线观看 | 亚洲人成在线免费网址| 男人添女人高潮在线观看| 亚洲欧美日韩久久一区| 97视频精品全国在线观看| 亚洲日本va午夜中文字幕一区| 狠狠爱五月天久久综合| 丰满女人又爽又紧又丰满| 国产伦精品二区三区视频| 91精品国产自产在线在老师啪| 国产成人久久久99| 欧美激情精品久久久久久不卡| 欧美精品在线免费看| 国产女同在线99| 欧美成人精品成人综合在线播放 | 亚洲欧美中文视频网站| wwwxxx在线| 富二代精品在线观看| 国产欧美日韩视频| 日本免费在线观看视频大全| 亚洲人成亚洲人 成人在线观看| 伊人久久狠狠综合| 久久久久久久久国产毛片| 产日韩欧美一区二区三区乱码| 国产一区自拍视频免费在线观看| 骚货av一区二区 麻豆伊人一区二区 | 懂色一区二区在线| 九九免费视频中文字幕在线观看| 亚洲少妇精品自拍av| 国产精品久久久久久久久电影网 | 国产成人精品白浆久久| 久久精品国产99久久无毒不卡| 欧美在线亚洲国产免m观看| 青青草精品视频在线播放| 校园春色在线视频中文字幕| 欧美视频一区二区免费不卡| 午夜桃色国产精品| 欧美日韩在线播放色| 桃色视频在线免费观看| 亚洲2022av国产精品| 欧美日韩亚洲另类自拍| 天堂不卡一区区在线网| 好看的熟女片一区二区| 老司机精品午夜视频在线| 成年人黄片免费在线播放| 日韩综合成人中文字幕| 欧美精品日日鲁夜夜添| 欧美三级免费电影在线观看| 国产精品久久久久久久久电影网| 国产精品四虎影视| 亚洲色婷婷一区二区三区| 熟妇女人妻丰满少妇中文字幕 | 中文精品久久久久人妻| 久久久一级精品黄色片| 日本人妻精品一区视频| 久久精品国产99久久无毒不卡| 日韩少妇污一区二区三区| 日本免费一区二区视频网站| 日韩欧美美女高清在线不卡| 久久精品一区二区免费播放| 国产免费一区二区三区播放| 国产精品久久免费一区dyd| 久久夜色精品国产卜| 午夜av在线影院 国产精品免费看av| 精品久久久久久久国产| 欧美色综合二区三区四区 | 麻豆文化在线观看一区二区| 国产伦精品二区三区视频| 99精品欧美一区二区三区蜜臀| 日韩亚洲人成网站在线播放| 91理论片午午伦夜理片久久| 国产高清在线视频一区二区三区| 国产成人蜜臀av一区二区三| 欧美激情在线网址| 欧美日本电影在线观看视频| 在线中文字幕无第一页| 亚洲综合视频一二三区| 又黄又骚又爽国产| 中文有码在线观看| 天天躁夜夜躁狠狠躁2021a2| www.在线视频中文字幕| 爱爱免费视频96xx久久| 欧美成人精品免费视频网站| 亚洲一区二区三区精品播放| 成人亚洲a片v一区二区三区蜜臀| 激情综合婷婷丁香五月尤物| 亚洲国产精品狗做人人爽| 亚洲高清福利一区二区| 欧美另类图片视频无弹跳第一页| 99久久精品免费国产视频| 国产欧美日韩一区在线| 精品久久综合1区2区3区| 一级片日本一区二区| 欧美国产综合欧美视亚洲码国产 | 91人妻国产精品麻豆| 午夜av在线影院 国产精品免费看av | 欧美激情一区自拍| 亚洲s码欧洲m码国产av| 中文字幕免费观看有码| xxxwww欧美性| 久久中文字幕中出| 人妻乱人伦中文在线| 2020国产在线| 国产熟女激情高潮嗷嗷叫| 手机在线欧美日韩精品| 久久精品国产99久久99久久久| 亚洲图片小说激情综合| 亚洲黄色美女免费网站| 我要看黄色1级片| 日韩精品在线免费观看视频| 久久久久综合精品福利| 亚洲国产精品视频一二三区 | 午夜国产二三级黄色片| 久久caoporn国产免费| 午夜在线免费观看福利| 日韩欧美视频免费观看| 国产黄色一级免费观看| 亚洲av国产综合一区| 国产精品一国产av涩爱| 成人午夜av福利 成人午夜福利18 www成人午夜福利 | 久久精品制服丝袜一区二区| 成人午夜福利专区| 欧洲日韩中文在线| 香蕉视频一区二区免费看| 亚洲人人夜夜澡人人爽| 国产视频一区二区免费在线播放| 亚洲成人av大片 亚洲成人第一av看片| 精品黄色免费中文电影在线播放| 成人婷婷综合天堂| 窝窝欧洲国产精品午夜看片| 99re中文字幕亚洲| 欧美一区二区人视频| 黄色裸体一区二区| 久久久区一区二区三区| 日本强乱中文字幕在线播放| 中文字幕亚洲免费观看| 人妻久久久精品69系列| 日韩高清影院中文字幕| 性欧美精品xxxx| 黄色在线观看免费一区二区三区| 日韩精品美女福利视频| 日韩成年在线观看高清完整版| 国产熟女一区二区三区黄| 偷拍亚洲欧美精品| 欧美亚洲一级片在线观看| 欧美福利一区二区三区| 日韩精品毛片视频| 亚州欧美激情小说另类| 看国产日韩av免费| 久久香蕉国产线看观看手机| 欧美精选视频一区二区| 日本aⅴ一二区在线观看| 亚洲2022av国产精品| 国产一级黄片在线播放视频| 国产成人深夜免费观看视频在线| 日韩.欧美.国产.无需播放器| 日韩女优 国产高清在线播放| 欧美日韩免费播放一区二区| 神马午夜精品二区| 亚洲中文字幕乱码人妻2| 日本高清视频不卡码| 精品黄色免费中文电影在线播放| 国产欧美自拍他拍在线观看| 中文乱码一区二区视频| 亚洲国产综合尤物| 久久99精品在线观看| 精品熟女久久久久浪| 最新日韩精品在线免费观看 | 一本色道久久综合亚洲精品高| 一级黄色大片免费在线观看| 福利视频一二三区| 看片网址av中文字幕在线观看| 一区二区免费av| 国产三区四区五区在线观看| 中文字幕视频在线不卡| 国产成人亚洲av人片在线观看 | 中文字幕一区二区三区精品| 精品国产乱码久久久久夜夜嗨 | 欧洲一区二区视频免费在线观看| 国产va精品免费观看| 亚洲欧美中文在线v日本| 亚洲人成电影网站国产精品| 日韩av免费在线高清观看| 久久久精品综合日韩国电影| www.国产三级| 伊人久久综合网亚洲| 人妻一区二区三区人妻黄色| 最新在线观看中文字幕| 999久久精品人妻| 欧洲日韩中文在线| 五月天堂久久综合| 成人午夜爽爽爽免费视频| 免费一区二区三区四区| 成年午夜视频国产不卡播放源| 日本理论视频中文字幕| 欧美 亚洲 另类在线| 国产亚洲av嫩草精品影院| 欧美日韩国产精彩视频| 少妇一级二级三级| 国产精品视频精彩视频| 精品乱码一区内射人妻无| 国产成人精品电影在线播放| 免费人成黄页在线观看69| 久久蜜臀av一区三区| 国产三级精品三级观看| 欧美一区二区三区四高清视频| 亚洲最大日韩免费观看视频| 少妇一级二级三级| 欧美,日韩久久中文字幕1| 日本人妻中文久久| 日韩综合成人中文字幕| 国产又粗又长又猛又爽又黄视频| 黑人精品xxx一区二区三区| 日韩欧美制服人妻中文字幕| 7788色淫网站免费| 美女黄色在线观看一区| 久久久精品欧美综合| 国产麻豆一区二区三区视频大全| 国产成人av在线播放| 亚洲精品福利三区| 天天一区二区三区av| 精品亚洲女同一区二区| 欧美午夜一区二区在线| 亚洲av啊啊啊在线观看| 国产中文字幕久操 | 俺也色亚洲色图中文字幕| 巨大黑人极品VIDEOS精品| 亚洲综合在线7777| 免费观看国产黄p| 中文字幕亚洲免费视频| 日韩二区中文字幕在线| 日韩中文字幕在线观看的| 中文字幕人妻16p| 国产精品私拍在线| 久9热免费在线视频| 国产av中文字幕片| 国产一级精品久久久久| 黄色大片日韩一区二区国产| 在线视频欧美亚洲| 久久午夜精品免费看| 国产美女女优网站免费观看 | 亚洲天堂一区二区三区在线观看| 国产又粗又长黄片| 狠狠躁天天躁夜夜添人人| 欧洲日韩中文在线| av黄色在线免费观看不卡| 国产va精品免费观看| 中文字幕人妻欲求不满| 丰满无码人妻熟妇无码区 | 国产精品久久72| 在线免费av日韩 成人午夜av日韩| 精品人妻乱码久久| 福利一区二区国产| 中文官网天堂在线看| 狠狠躁夜夜躁人人爽天天高潮| 亚洲伦理偷拍欧美,另类,色图| 亚洲精品第一国产| 老司机成人av在线| 在线免费观看黄色网址| 久久国产精品不卡一二三| 日韩av在线高清观看| 日本视频在线观看精品| 国产午夜精品乱码人妻老太太| 亚洲福利午夜视频| 99热这里只有精品6在线观看| 亚洲视频久久一区二区三区| 国产乱码精品一区二区vv| 欧洲精品一区在线观看视频| 少妇无套内射呻吟高潮久久久 | 婷婷中文字幕综合在线视频 | 91在线精品视频| 人妻人人玩人人爽| 激情五月天丁香综合| 日韩亚洲国产av影片| 国产午夜亚洲精品| 不卡av二区在线 不卡的av在线一区| 黄色网址网站 久久| 亚洲淑女一区二区| 一区二区三区在线视频蜜臀| 日本中文字幕福利视频| 欧美精品偷拍亚洲| 日本精品专区在线观看| 狠狠综合久久久久综合网小蛇| 看亚洲成人a级片| 亚洲精品三区在线观看免费| 日本免费不卡中文字幕| 欧美三区,亚洲三区| 久碰香蕉视频在线观看精品| 欧洲久久精品一区二区三区| 不卡在线观看中文字幕| 在线免费观看av中文字幕| 成人午夜视频免费观看| 男人的午夜天堂免费在线| 国产精品视频福利| 国产精品色网久久| 国产福利视频免费在线观看| 麻豆中字一区二区md| 国产大学生情侣呻吟视频| 日本福利视频中文字幕| 国产欧美久久久另类精品| 欧美日韩女电影在线播放.| 国产成人女人在线观看| 亚洲av三区在线播放| 亚洲av午夜十八禁福利影视| 精品亚洲女同一区二区| 成人一级片免费观看| 亚洲欧美一区二三区| 成人H动漫精品一区二区无码| 日本欧美视频网站色| 亚洲一级淫片在线高清播放| 手机看片日韩国产| 亚洲精品中文字幕一区二区三区 | 亚洲爱爱视频完整版中文字幕| 日本黄色视频不卡一区二区| 噜噜噜久久亚洲精品| 久久东京热日韩精品一区| 国产精品亚洲综合色| 波多野结衣国产av| 国产婷婷91在线精品| 亚洲一区二区免费视频观看| 亚洲国产日韩欧美视频| 日韩欧美中文字幕一区二区三区 | 日本视频在线视频一区二区| 91久久香蕉国产线看观看软件| 国产精品视频 在线观看| 亚洲av鲁丝一区 在线观看一区二区不卡中文av| 亚洲少妇一区二区av| 日本在线激情免费播放刺激不卡| 久久九九亚洲精品免费视频| 茄子视频国产精品| 欧美亚洲日本国产综合网| 日韩视频精品二区| 国产内射久久精品| 在线观看成人免费高清| 国产成人深夜免费观看视频在线| 99国产精品国产精品毛片| 亚洲三级成人在线观看| 日韩视频免费看第一区第二区| 国产精品久久密av| 国产精品99久久99久久久不卡| 日韩美女精品黄片| 婷婷六月久久综合丁香76| 国产网红主播av国内精品| 99国产精品丝袜美腿| 亚欧日韩毛片在线看免费网站| 91精品国产首页| xxx黄片在线看| 日本超a级片一区二区| 日本在线观看精品视频| 成人午夜av福利 成人午夜福利18 www成人午夜福利 | 亚洲中文字幕va福利| 中文字幕av日韩一区| √天堂中文www官网在线| 精品婷婷在线观看| 美女网站黄是免费看| 激情自拍亚洲欧美日韩| 亚洲国产综合久久精品| www.日本在线视频观看| 国产高清免费在线| 精品国产乱码久久久久夜夜嗨| 91午夜精品福利视频| 日韩欧美视频免费一区二区三区| 午夜福利欧美激情福利| 久久精品亚洲国产天堂| av网站在线观看高潮| 精品一卡2卡新区乱码在线| 欧美视频在线免费观看黄片| 日本韩国中文字幕不卡首页| 美女搞基视频麻豆蜜桃久久| 精品一区二区狼人视频| 国产日产精品亚洲视频| 国产又黄又猛又爽又粗| 亚洲精品中文字幕制服诱惑| 日韩香蕉国产一区二区三区| 手机在线国产一区二区| 在线观看成人日韩视频| 最新久久悠悠一区二区| 精品一区二区三区在线视频观看| 亚洲国产综合日韩| 高清在线午夜一区二区亚洲| 黄色国产免费观看网站性色av| 欧美亚洲色图一区二区| 精品一区二区三区在线视频观看| 一区二区三区国产精品杏吧| 精品卡通动漫亚洲v第一页| 一区二区三区日韩视频| 久久99国产综合精品免费多人| 国产av成人中文字幕| 免费观看欧美日本一区| 久久久久黄色精品免费看| 欧美成人免费久久| 亚洲三级成人在线观看| 视频一区二区三区中文| 国产精品一区二区三区有码| av黄色在线免费观看不卡| 日韩aⅴ中文字幕在线播放| 国产成人v爽在线免播放观看| 少妇人妻精品一区二区传媒蜜臀| 亚洲综合色区中文字幕| 自由成熟的性色视频免费观看| 国产999精品视频| 亚洲福利爱爱爱视频| 亚洲天堂中文字幕首页| 日韩欧美中文三级| 亚洲欧洲中文字幕在线| 国产精品视频一区二区三区八戒| 天堂а在线地址8最新版| 欧美日韩美腿丝袜一区在线视频 | 午夜片国内精彩视频一区二区| 国产成人一区二怕在线观看| 日本成人久久一区| 久久WWW免费人成人片| 好看精品日本一区二区| 亚洲人妻偷拍第一区| 丝袜 国产 日韩 另类 美女| 国产专区 日韩精品| 国产福利视频免费在线观看| 91精品福利一区二区三区| 欧美三级淫片免费看| 久久精品手机免费看片| 亚洲女人的天堂天天视频| 亚洲av网站在线播放| 精品视频中文字幕在线| 天堂av在线成人 天堂成人av在线| 国产在线精品观看一区二区| 成人漫画免费观看入口| 一区二区三区国产精品自拍| 国产男女裸体做爰爽爽| 久一精品视频在线观看| 日本美女三级视频网站| a亚洲国内精品免费黄片在线| 一本精品99久久精品66不卡| 国产又粗又长又猛又爽又黄视频| 色婷婷在线观看视频在线观看| 亚洲中字字幕中文乱码| 久久国产欧美日韩视频| 欧洲一级欧洲三级在线观看| 最新日韩av在线天堂| 精品国自产拍在线观看| 国产精品高潮呻吟久久久久久| 国产精品久久国产亚洲av站长| 亚洲精品无码久久久久牙蜜区| 国产精品视频在这里有精品| 国产一区二区不卡在线 性色| 最新在线观看中文字幕| www.久久久久| 网站上日韩一区二区三区三| 欧美日韩国产我不卡一区| 亚洲av网站在线播放| 国产av久久久久精东av| 亚洲开心网伊人久久国产精品| 久久久免费精品免费中| 国产精品国产三级国快看| 久久精品国产秦先生| 欧美黑人成人免费全部| 中文官网天堂在线看| 国产成人一区二区福利视频| 91中文字幕视频在线永久观看| 美女丝袜在线观看一区二区| 天堂а在线地址8最新版| 国产成人免费97在线| 欧美午夜视频免费观看| 欧美精品国产亚洲另类| 国产精品天天在线观看| 鲁啊鲁啊鲁在线视频播放| 日韩人妻欧美人妻| 亚洲综合视频一二三区| 国产亚洲一二三区精品| 观看免费在线日韩黄色av网站 | 精品一区二区久久人人爽| 大象传媒成人在线观看| 一级黄片免费观看| 久久久久久一草婷婷视频网| 精品性成人免费视频观看| 欧美日韩国产精彩视频| 国产亚洲av美女网站在线看| 免费观看在线观看不卡的av| 精品久久久久久人妻无| 国产一区亚洲二区三区毛片| 国产激情中文字幕av| 国产三级黄在线视频| 久久久精品人妻一区二区三区蜜桃 | 久久综合精品91| 不卡色老大久久综合网| 欧美在线不卡高清视频| √天堂中文www官网在线| 中文字幕免费观看有码| 欧美女↗区二区三区| 99久久无色码中文字幕婷婷| 亚洲色图中文字幕色婷婷| 中文字幕资源欧美| 2020国产在线| 大香蕉黄片精品在线| av片一区二区三区| 人妻蜜桃av一区二区| 国产精品高潮呻吟久久久久久 | 亚洲精品在线视频第二页| 欧美成人精品一二三区| 综合久久给合久久狠狠狠97色 | 天天操夜夜操视频精品| 国产熟女一区二区三区黄| 国产精品极品一区二区免费视频| 日本欧美一区二区三区视频麻豆| 蜜臀视频在线一区二区三区| 欧美va亚洲va在线观看| 美女午夜不卡视频在线观看视频| 在线观看美女色网站| 日本美女三级视频网站| 中文高清在线中文字幕日韩| 欧美日韩国产电影中文字幕| 免费日韩中文字幕av| 国产日韩一区二区三区在线视频 | 在线视频欧美亚洲| 中文字幕第三页在线播放| 欧洲日韩中文在线| 欧美日韩免费一级黄片| 日韩视频在线播放一区| www.久久久久| 日韩人妻一区二区爽| 亚洲精品一区二区三区视频| 日韩在线观看视频一区二区三区 | 国产+成+人+亚洲欧洲在线| 国产亚洲丝袜av在线播放| 欧美成人午夜一卡二卡在线视频| www.日本在线视频观看| 欧美国产精品bb大区久久| 在线观看亚洲专区一二区| 91午夜精品福利视频| 欧美激情在线亚洲y| 人妻中文字幕在线四区| 国产一级色片中文字幕| 中文字幕亚洲免费视频| 亚洲另类图片区小说区| 亚洲国产五月天久久| 亚洲综合一区精品无码| 国产精品永久免费视频| 欧美视频后入一区二区三区| 给我免费播放毛片| 欧美日韩tv免费观看| 国产一区二区这里只有精品| 黄色激情网站中文字幕| www.在线视频中文字幕| 成人高清在线观看91| 欧美黄色网页在线免费观看| 91久久久色在线观看| 午夜一级二级三级| 一区二区三区新视频| 亚洲在av极品无码| 一区二区三区视频区| 日韩激情视频在线一区二区| 精品人妻av区乱码久久蜜臂| 国产精品综合色区av| 亚欧洲精品在线视频| 国产成人在线二区三区| 亚洲精品中文字幕在线安v| 丰满无码人妻熟妇无码区| 久久久精品美女mm久久久| 久久久久久国产精品免费精品| 久久久久久久综合岛国免费观看| 欧美在线免费va 欧美在线这里只有精品| 欧美精品自拍视频在线看| 国产午夜福利精品久久2021 | av影院一区二区三区| 亚洲不卡中文字幕无码| 使劲快高潮了国语对白在线 | 日本人妻中文字幕乱码系列| 亚洲精品一区在线观看视频| 美女又黄又免费网站| 亚欧洲精品在线视频| 成人深夜福利在线视频| 欧美日韩高潮喷水在线观看视频| 日韩精品免费视频播放| 成人漫画免费观看入口| 亚洲最大的av免费网站| 午夜欧美久久久久| 欧美日韩黄片在线免费看| 中文字幕第二十一页在线| 蜜臀视频在线一区二区三区| 午夜福利精品影院| 日韩精品一区二区av自拍| 午夜久久福利天堂av| 日本视频在线观看精品| 日本人妻少妇视频专区| 亚洲视频欧洲视频在线观看| 欧美 色亚洲一区| 国产熟女一区二区精品视频| 国内在线视频网站在线观看免费| 天天爽天天狠久久久综合麻豆| 亚洲激情视频在线观看不卡一二| 国产91av视频在线观看| www.国产精品毛片| 欧美精品成在线观看| 久久精品99久久香蕉欧美| 久久亚洲欧美国产精品| 欧美视频一区二区免费不卡| 国产精品绯色蜜臀99久久| 精品91久久久久久久久久 | 你懂的电影在线观看亚洲成人| www.国产av美女| 亚洲中文字幕va福利| 国产一级黄色毛片| 最新中文字幕在线观看一区| 欧美巨猛xxxx猛交黑人97人| 亚洲欧美校园春色激情| 欧美精品极品在线一区| 国产精品免费麻豆入口| 亚洲免费在线观看| 少妇人妻精品一区二区传媒蜜臀| 丁香啪啪激情综合开心网| 欧洲精品乱码久久久久久按摩 | 手机av免费在线观看| 精品国产18禁久久久久久| 亚洲视频播放在线| 青青久久婷婷七月| 欧乱色国产精品兔费视频| 国产亚洲不卡一区二区三区| 丁香激情综合色伊人久久| 亚洲中码中文字幕人妻电影| 117美女写真午夜一级| 亚洲国产日韩欧美视频| 黄色在线观看免费一区二区三区| 欧美精品一区二区三区的| 久久久久一区二区三区不卡| 久一色屋精品视频在线观看| 麻豆国产激情啪啪| 亚洲国产欧美视频在线看| 久久久精品视频一区| 国产成人aⅴ在线免播放观看 | 亚洲成色www久久网站不卡| 日本日本一本色道网站| 日韩精品高清在线一区| 国产精品suv一区二区三区6 | 午夜偷拍的视频久久久免费大全| 成人av天堂中文在线| 日韩在线视频手机| 欧美日韩在线亚洲一区蜜芽| 国产精品久久免费一区dyd| 欧美亚洲色图一区二区| 久久人妻久久久人妻| 久久av一区二区三区软件| 婷婷六月久久综合丁香中文| 国产女主播在线免费| 最近中文字幕在线一区| 亚洲精品视频在线观看免费网址| 国产人妖av一区二区在线观看| 国产免费av网站入口| 精品国产18禁久久久久久| 亚洲天堂最新地址在线观看| 国产三级精品三级观看| JAPANESE日本熟妇伦M0M| 正在播放午夜福利合集| 免费观看一区二区三区视频| 亚洲综合欧美精品| 高清蜜桃久久久av| 国产伊人精品99| 手机福利看片永久免费| 欧洲视频一区二区三区在线观看| 亚洲中码中文字幕人妻电影| 92看看一区二区三区在线观看 | 精品日韩国产欧美在线| 成人av网站一区二区三区| 日本电影一区二区在线观看| 亚洲美女福利视频网址| 国产精品麻豆久久| av黄色在线免费观看不卡| 亚洲图片欧美人妻| 国产国产一区二区三区| hs视频在线观看| 国产精品久久2区| 免费的欧美一区二区| 最近日韩成人免费视频| 免费看的小黄片视频| 国产成人久久久99| 精品久久久久久久久久久ai| 黄色小视频网站免费| 国产成人福利视频在线观看| 日韩中文 人妻少妇| 国产午夜亚洲精品| 亚州欧美激情小说另类| 宅福利国产欧美亚洲| 少妇人妻 中文字幕| 久久精品视频 一个人看| 亚洲av午夜十八禁福利影视| 国产经典高潮黄色的女人视频| 午夜福利欧美激情福利| 91在线国产在线一区视频 | 亚洲av午夜十八禁福利影视| 中国女人一级做受免费视频| 日韩精品中文字幕一区二区三区| 麻豆国产一区二区三| 久久久久久人妻精品一区按摩| 久久久亚洲老熟妇熟女| 国产精品久久久久久人妻爽| 久久久精品欧美综合| 亚洲成人三级在线观看| 国产av久久久久精东av| 肥熟女巨臀亚洲一区二区三区| 久久精品一中文字幕!| 欧美国产日本在线不卡| 亚洲欧美卡通武侠古典偷拍| 中文字幕中文字幕日韩一区| 国产又大猛又大粗av一区| 男人的午夜天堂免费在线| 亚洲一区二区三区 视频| 久久精品国产99久久无毒不卡| 人妻美女中文字幕| 四虎在线中文字幕一区二区| 国产午夜精品乱码人妻老太太| 人妻中文字幕在线播放| 亚洲精品视频在线观看免费网址| 日本视频高清在线播放| 久久国产精品99久久久久久牛牛| 欧美巨猛xxxx猛交黑人97人| 亚洲欧美校园春色激情| 亚洲区中文字幕在线| 国产 欧美 日韩制服| 国产成人精品亚洲 91| 亚洲人成色77777在线观看大战| 日本一区二区三区免费区| 美女色网站在线观看不卡av| 精品欧美乱码久久久久久一区| 亚洲国产精品特色大片观看完整版| 日韩精品最新久久久| 一级黄色中文字幕片| 亚洲 欧洲视频免费| 久久久久久久久久久久蜜臀| 一级片在线免费观看不卡| 青草av久久一区二区三区| 国产成人小视频在线观看| 日韩精品久久男女人妻| 东京热中文字幕视频| 中文字幕在线乱码观看av| 中文精品久久久久人妻| 视频亚洲日本欧美| 99精品国产免费观看视频| 在线电影免费观看二卡av| 91精品久久久久亚洲国产| 午夜免费久久久久久| 日韩综合精品视频在线观看| 久久精品手机免费看片| 精品国产免费久久久久| 日本高清一区二区三区水蜜桃| 欧美 国产 在线 观看| 亚洲国产日韩精品久久久久久久| 综合久久五十路熟女| 欧美日韩免费播放一区二区| 日韩一区二区美色一级片| 99热这里只有精品免费在线| 女同一区二区三区| 精品日韩国产欧美在线| 国产乱码精品一区二区vv| 亚洲国产午夜高清毛片| 亚洲高清视频在线观看一区二区| 国产成人精品白浆久久| 国产欧美综合第一页| 亚洲不卡一级电影观看| 在线一区二区三区高清视频| 国产精品一国产av涩爱| 精品久久成人性生活视频| 亚洲 婷婷 在线一区二区| 看亚洲成人a级片| 中文字幕高清在线播放第一页| 精品国产成av片 青青人亚洲av免费观看| 免费精品99久久香蕉国产| 国产网红在线主播福利96| 2021年国产精品久久| 亚洲天堂国产成人在线观看| 一级黄色大片免费在线观看| 国产大学生情侣呻吟视频| 99国产成人免费视频| www.一区二区少妇| 久久精品99久久久久久久久久| 国产一级片免费观看| 中文字幕日韩第一精品| 在线观看精品视频网站| 亚洲高清一二三区在线播放视频| 亚洲卡公司在线观看视频| 猫咪在线观看视频最新地址| 92在线精品视频在线观看| 亚洲欧美国产丝袜网站| 欧美日韩tv免费观看| 国产欧美自拍他拍在线观看| 中文字幕免费视频不卡二区| 精品二精品一区二区视频| 亚洲国产综合性亚洲综合性| 日本二区在线观看| www.久久久久久久久| 99精品视频免费在线观看| 亚洲第一区av在线免费看| 欧美国产日韩一区二区东京热| 精品一区二区免费视频观看| 国产精品午夜免费观看| 精品一区亚洲欧美| 日本成人久久一区| 高清蜜桃久久久av| 91久久精品日日躁夜夜躁91| 亚洲一区在线免费观看91| 精品影院一区二区三区| 国产一区二区不卡在线 性色| 性欧美性另类巨大| 精品99久久久久| √最新版天堂资源网在线下载| 老熟女乱淫视频一区二区| 黄色一级大片网上免费看| 久久性生大片免费观看性| 福利片网站视频在线观看| 精品国产成人xxxx三上悠亚| 中日韩欧美一区二区视频 | 这里有精品婷婷狠狠狠操| 久热99这里只有精品视频| 影视一区二区三区| 亚洲欧洲在线精品| 久久亚洲女同第一区综合| 亚洲区中文字幕在线| 国产日韩精品双片在线观看| 在线免费日韩av| 手机在线观看视频欧美日韩| 亚洲av片不卡码在线| 中文字幕第一在线观看视频| 成人午夜爽爽爽免费视频| 免费人成视频在线观看网站| 国产精品自产拍在线观看777 | 国产又大猛又大粗av一区| 国产成人av网站一区在线看| 亚洲国产成人在线观看免费| 亚洲一区二区三区精品播放| 国产精品最新乱视频二区| 美女又黄又免费网站| 日韩欧美高清久久久| 中一区二区在线视频| www.久久精品| 成人在线一区二区网站| 天天爱天天做天天爽夜夜揉| 久热视频精品在线| 老熟女精品视频12区| 丝袜美女在线观看一区二区三区| 欧美日韩免费一区| 精品乱码中文一区二区三区 | 婷婷六月久久综合丁香中文| 宅福利国产欧美亚洲| 嗨久久网一区二区| 欧美人与性动交另类| 手机在线不卡一区二区免费视频| 影视一区二区三区| 手机av免费在线观看| 99久无码中文字幕一本久道 | 国产成人高清精品亚洲| 国产精品福利视频合集| 亚洲乱码av中文区| 欧美一二三区视频不卡| 日韩欧美亚洲综合首页| 黄站午夜福利观看| 午夜一级毛片亚洲欧洲天堂| 亚洲欧美日本国产一区| 精品久久久久久字幕人妻| 中文字幕亚洲人妻色偷偷久久| 91精品国产91久久网站| 久久一区二区欧美| 国产精品一级片在线观看| 老司机精品午夜视频在线| 国产高潮流白浆视频在线观看| 人妻久久久精品69系列| 欧美人与性动交另类| 在线视频免费看亚洲区| 精品久久91麻豆| 2021年国产精品久久| 欧美日韩国产在线人成网站| 精品一区少妇视频| 久久久精品人妻一区二区三区蜜桃| 欧美人与性动交另类| 琪琪 在线视频一区二区三区| 中文字幕免费视频不卡二区| 亚洲欧美国产剧情| 国产亚洲中文字幕成人| 国产精品嫩模高潮在线观看 | 欧美在线精品系列| 999九九九精品视频在线观看| 久久精品亚洲国产天堂| 激情图片区一区二区三区| 国肉精品国产三级国产av| a∨色狠狠一区二区三区| 亚洲永久欧美精品| 日韩中文 人妻少妇| 国产又黄又猛又粗又爽的视频边| 樱桃视频一区二区三区| 日本精品一区二区三区视频| 亚洲va中文慕无码久久av| 国产又大猛又大粗av一区| 日本一区二区三区清视频| 色欲天天网站欧美成人福利网| 欧美 自拍 日韩 国产| 日本黄视频一区二区三区| 黄色的视频一区二区三区| 免费观看污视频网站| 亚洲精品大片www| 亚洲综合视频二区| 中文字幕日韩一级| 久久五月精品综网中文字幕 | 99精品视频 在线观看| 国产揄拍高清国内精品对白| 最新久久悠悠一区二区| 国产精品国产三级国快看| 久久久久久黄色片| 日韩欧美视频免费一区二区三区| 日韩高清一道本中文字幕| 六月丁香婷婷色狠狠久久| 九九热视频/这里只有精品| 亚洲精品超碰在线观看| 一级黄片免费观看| 野花社区视频在线观看| 日韩精品毛片人妻特黄| 黄色片一区二区三| 国产成人三级视频在线播放| 人妻蜜桃av一区二区| 九一精品国产综合久久久久久久 | 后入翘臀少妇一区二区三区| 在线观看亚洲成人| 91亚洲日本aⅴ精品一区二区| 蜜桃人妻一区二区| 亚洲 国产 欧美日本性色| 色嫒精品一区二区三区| 亚洲精品在线资源免费观看 | 91理论片午午伦夜理片久久| yw尤物亚洲国产一区| 日韩高清在线观看不卡一区二区| 成人午夜av福利 成人午夜福利18 www成人午夜福利 | 免费一区二区三区久久| 国产亚洲精品综合在线网站| 午夜精品久久久久久久99黑人| 国产亚洲在线精品视频| 一区二区九亚洲观看三区不卡女| 中文字幕日本乱交| 日本国产成人黄网站| 久久久精品视频国产| 日韩字幕第三页日韩字幕第三页| 日韩精品成人一区| 极品久久国产av 久久国产极品av| 精品日韩久久久久久久| 欧美视频在线免费观看黄片| 东方av免费观看久久av| 国产成人精品免高潮在线观看 | 日本欧美一区二区三区视频麻豆| 国产麻豆一区二区三区视频| 久久婷婷综合缴情亚洲狠狠| 亚洲高清福利一区二区| 亚洲最大免费av在线播放| 观看中文字幕日韩三级av| 少妇9999九九九九在线观看| 久久婷五月综合网| 成年人午夜福利av| 日本欧美亚洲三级| 手机在线免费看中文字幕av| 精品国产福利一区二区在线| 亚洲视频在线观看免费网站| 亚洲伊人久久大香线蕉影院| 337p亚洲日本国产欧洲| 欧美成人午夜一卡二卡在线视频| 一区二区三区视频日韩| 国产经典高潮黄色的女人视频| 久久午夜鲁丝午夜精品| 黄色片在线免费观看精品| 天堂无码人妻精品av一区| 国产精品久久久久网站| 欧美另类图片视频无弹跳第一页| 亚洲男人第一av天堂| 欧美精品一区二区精品久久| 超碰97人人做人人爱亚洲尤物| 中文字幕在线乱码观看av| 国产精品9在线观看| 日韩欧美精品一区二区三区经典| 少妇性色一区av 国产午夜精品不卡在线观看| 久久亚洲女同第一区综合| 国产suv精品一区二区视频| 欧美成人精品一二三区| 亚洲欧美卡通武侠古典偷拍| 99精品视频 在线观看| 国产日韩在线播放不卡欧美| 国产又黄又猛又爽又粗| 中文字幕第一页在线看| 精品视频中文字幕在线| 亚洲欧美国产又粗又猛又爽又黄| 国产精品美女一区二区| 人人妻人人澡人人爽欧美视频| 日韩精品 亚洲成人| 美女张开腿国产91| 中文字幕偷拍一区| 久久露脸国产精品午夜福利| 野花社区视频在线观看| 欧美亚洲精品国产1区2区| 一区二区三区高清免费在线| 亚洲精品国产网红主播在线| 午夜欧美久久久久| 欧美日韩高潮喷水在线观看视频| 午夜内射一区二区三区| 亚洲a版天堂一区二区三区| 亚洲欧美香蕉在线日韩精选| 伊人久久大香线蕉aⅴ色| 国产丝袜一区二区在线观看| 成人a小视频在线观看| 内射一区二区精品视频在线观看| 日本一区二区三区视频在线看| 日韩美女视频资源吧a| 艹少妇视频在线免费观看| 亚洲一区二区三区精品播放| 亚洲日本va午夜中文字幕一区| 国产熟女一区二区三区黄 | 国产精品九九九九九| 午夜福利视频一区二区| 日本超a级片一区二区| 亚洲国产精品卡一卡二| 黄片一级欧美日韩一区二区 | 日韩精品一区二区三区www | 日本一区二区三区清视频| 天堂欧美城网站网址| 成人午夜影院网址| 国内在线视频网站在线观看免费 | 欧美久久久精品中文字幕| 久久午夜精品免费看| 8av国产精品爽爽在线播放| 日韩av电影中文字幕不卡| 中文字幕有码视频看看| 老司机成人av在线| 欧美极品少妇xxxx喷水| 黄色片在线免费观看精品| ,日本熟妇中文字幕aⅴ| 亚洲乱码国产乱码精品精男男 | 视频 福利 在线 午夜| 在线免费观看av不卡| 一区二区九亚洲观看三区不卡女| 亚洲人妻乱交在线视频| 日本永久在线中文字幕| 一级黄色大片免费在线观看| 成人欧美一区二区三区视频xxx| 爱爱免费视频96xx久久| 婷婷国产精品中文字幕| 日韩视频第99页亚洲精品| 给我免费播放毛片| 日韩精品免费视频播放| 国产精品美脚玉足脚交欧美图片| 亚洲另类自拍欧美| 国产一区二区三区xxxx久久| 欧美人成视频免费看| 日本精品久久久久久久久免费| 哦美激情中文字幕亚洲| 亚洲黄在线观看免费观看| 国产日本欧美在线看| 日韩亚洲国产av影片| 久久精品在线23高清| 国产精品日本一区二区| 日本欧美一区二区视频在线观看| 日韩乱码av一区二区| 免费国产一区二区三区视频| 久久精品国产精品| 665566综合中文字幕在线| 无码毛片一区二区三区本码视频| 国产suv精品一区二区视频 | 国产亚洲中文字幕成人| 中文亚洲欧美日韩无线码| 久久99国产66精品久久| 在线观看永久免费av| 亚洲 成人 欧美 国产91 日本视频高清www色| 亚洲精品天堂日韩| 国产精品精品久久久久久潘金莲 | 国产成人真人视频| 中文字幕黄片免费在线观看| 精品久久久久久综合网| 日本一区不卡高清更新区 | 国产午夜亚洲精品| 欧美日韩国产第二页| 国产亚洲在线精品视频| 三级中文字幕在线播放| 亚洲国产精品人人做人人爱j| 亚洲欧美日韩精品另类| 狠狠色丁香婷婷久久综合考虑| av免费网站一区二区| 茄子视频国产在线观看| 精品三级在线播放| 亚洲成人日韩欧美伊人一区| 欧美精品在线免费| 欧美日韩精品亚洲欧美| 亚洲av国产综合一区| 免费观看欧美日韩一区二区三区| 午夜爽爽久久久毛片| 欧洲97色综合成人网| 欧美日本日韩一二区视频| 久久少妇呻吟视频久久久| 在线观看免费不卡小黄片| 色综合久久久久综合99| 久久亚洲国产毛片| 2021自产拍在线观看视频| 久久精品店一区二区三区| 久久一级生活黄片| 国产精品黄色av电影网| 亚洲精品中文字幕999| 中文字幕在线观看视频久| 久久精品成人一区二区三区| 亚洲av制服丝袜在线| 99免费观看视频三区| 国产精品日本一区二区| 中文字幕一页在线| 国产99久久久国产精品免费看| 日本少妇高潮久久久久久久久| 欧美日韩免费一级黄片| 99精品国产免费观看视频| 午夜一级毛片亚洲欧洲天堂| 久久www成人片免费看| 精品视频精品91美女视频| 在线天堂av网站 在线免费av天堂 亚洲成人色电影在线观看 | 亚洲欧美视频一级网站| 久久精品一区二区三区按摩| 日韩精品 视频二区| 欧美在线中文字幕不卡| 久久人妻中文av 久久中文人妻av| 午夜中文字幕日韩综合| 国产精品久久密av| 欧美日韩无线码免费播放| 久久中文字幕视频网站| 国产高清不卡在线观看av| 欧美在线不卡高清视频| 亚洲最大的av免费网站| 久久久精品人妻一区二区三区| 欧美一区精品中文字幕| 国产在线精品一二三区不卡| 精品一区少妇视频| 久久国产精品伊人| 91久久国产精品视频| 98超碰人人与人人欧美| 免费看高清性色生活片| 日韩精品美女福利视频| 视频一区视频二区视频三区精品| 国产日韩欧美久久| 99热在线观看精品国产| 国产美女视频免费久久不卡| 中国福利视频一区二区| 国产成人精品亚洲 91| 国产精品综合色区在线观看不| 久久婷婷久久一区二区三区 | 91久久香蕉国产线看观看软件| 91精品福利一区二区三区| 综合久久给合久久狠狠狠97色| 美女视频免费区一区二区三| 丰满人妻乱淫精品.| 精品国产手机一二三区| 午夜1区二区不卡视频| 精品欧美va在线观看| 亚洲 欧洲 自拍 美女| 国产对白精品国语在线观看| 免费在线亚洲成人| 粉嫩一区二区三区| 日韩人一区二区三区| 亚洲欧美一区国产精品| 久久国产这里有精品视频| 日韩欧美大片免费观看网站| 精品国产成人综合| 在线播放bt天堂在线播放视频| 日韩免费高清视频在线播放| 日韩一级美女视频免费观看| 日本黄色三区视频| 91精品国产全国免费观看| 久久午夜精品免费看| 婷婷中文久久字幕| 国产揄拍高清国内精品对白| 成人午夜在线免费看一级片| 国产三级黄片一区二区三区| 在线观看成人美女| 国产嫩草官方永久入口| 最近中文免费一区二区三| 日本高清视频不卡码| 亚洲观看在线www| 免费精品99久久国产综合精品应用| 最新久久悠悠一区二区| 黑人欧美一区二区三区4p| 日韩欧美国产中文字幕一区| 亚洲人妻久久久久中文字幕| 日本一区二区三区免费区| 一本一本久久a久久精品综合麻豆| 日本人妻少妇久久| 成人在线一区二区网站| 日本精品一区二区三区视频| 免费看高清性色生活片| 精品一区二区视频麻豆网神马| 精品久久久中文字幕二区| 99精品视频免费在线观看| 日韩激情视频在线一区二区| 在线观看中文字幕也色| 操美女国产一区二区三区 | 2023小小精品女教师日韩精品亚洲人成在线播放 | 丝瓜视频在线免费观看| 伦理av在线一区二区| 麻豆一区二区91久久久| 国产精品黄色av电影网| 天堂无码人妻精品av一区 | 免费观看欧美日本一区| 加勒比av乱码一区| 国产aⅴ爽av久久久久久| 少妇9999九九九九在线观看| 欧美人妻日韩一区二区三区| segou视频在线观看| 视频一区视频二区视频三区精品| 午夜福利欧美激情福利| 综合欧美五月婷婷| 一级黄色精品久久电影| 亚洲综合偷拍一区| 蜜桃在线精品一区| n满人妻精品一二区| 午夜福利国产精品男| 在线你懂的精品日韩在线| 韩国日本欧美一区二区视频| 国产va精品免费观看| 中文字幕第三页在线播放| 91精品国自在自线免费观看| 人人爽人人爱欧美一区国产二区 | 欧美黄色一区二区三区| 麻豆影视国产日韩欧美一区二区| 欧美日韩91久久| 久久国产精品99久久久久久牛牛| 久久不射国产精品| 热久久免费频精品手机在线观看| 一级片欧美中文字幕| 99这里只有精品| 亚洲 成人 欧美 国产91 日本视频高清www色 | 日韩网址制服诱惑中文字幕| 午夜免费久久久久久| 正在播放午夜福利合集| 另类欧美日韩综合一区| 国产精品久久久久1卡2卡| 国产日韩一区二区三区在线视频 | 国产成人精品99| 制服丝袜av无码专区完整版| 中文字幕在线观看视频第一页| 国产精品久久久久1卡2卡| 秋霞电影在线五月婷婷激情综合| 国产男女裸体做爰爽爽| 日韩三级另类视频| 日本在线视频 一区| 小网站在线播放二区三区| 免费中文字幕日本| 美女一区视频看看| 亚洲精品超碰在线观看| 亚洲人妻久久久久中文字幕| 日韩视频免费看第一区第二区| 最新的亚洲不卡的一区在线| 999久久久免费看| 激情亚洲熟女视频狠狠操| 欧日韩视频777888| 亚洲日本∨a中文字幕久久| 在线中文字幕无第一页| 亚洲国产精品999| 国产区中文字幕在线| 一区二区三区在线观看电影网站| 亚洲欧美香蕉在线日韩精选| 久久亚洲欧美精品| 久久五月精品综网中文字幕| 在线 91 大神精品| 亚洲中文字幕永久免费观看| 乱中年女人伦中文字幕久久 | 在线免费日韩av| 国产精品久久久久久久久电影网| 日韩欧美一区二区在线观看| 5g免费影院永久天天影院在线 | 激情五月综合91| 亚洲中文字幕国产福利| 国产在线精品成人欧美| 亚瑟视频高清在线观看网站| 国产精品一区不卡在线观看| 国产成人三级视频在线播放播| 午夜精品久久久久久久99黑人| 狠狠爱91精品婷婷| 亚洲午夜精品福利电影| 国产精品麻豆久久| 青草国产在线视频| 国产999精品视频| 丁香婷婷综合精品六月初| 欧美在线亚洲国产免m观看| 中文字幕人妻诱惑在线| 久久一区二区成人精品| 精品tv一区二区三区四区| 久久久久黄色av网站| 在线观看亚洲成人| 欧美一级二级三级一区二区三区| 香蕉视频一区二区免费看| 亚洲jizzjizz在线播放久| 国产一区二区三区香蕉| 亚洲国产精品午夜福利在线播放| 国产免费一区三区三区视频| 色综合久久中文字幕有码| 蜜臀视频一区三区| 国产日韩欧美在线精品| 中文字幕人妻丝袜系列| 人人爽人人爽69av| 亚洲乱码av一区二区蜜桃| 精品国产丝袜美腿| 五月激情丁香久久 | 色人综合在线视频| 日韩免费一区二区人妻丝袜 | 国产成人精品一区二三区2022| 欧美成精品第一区二区三区欧美| 一区二区三区不卡在线| 91麻豆精品激情 在线观看| 少妇久久一区二区| 欧美一区三区四区五区| 欧美日韩成人在线免费| 日韩精品一区二区三区久久| 色哟哟哟—国产精品| 亚洲精品超碰在线观看| 2020国产在线| 97精品国产高清一区二区三区 | 91色综合久久熟女丰满| 国产a不卡片精品免费观看 | 国产精品福利资源导航| 黄色中文字幕在线网站| 又黄又骚又爽国产| 国产三级精品三级在线看| 色综合色综合狠狠天天| 欧美久久久精品中文字幕| 福利免费视频观看| 97国产精品午夜| 黄色中文字幕在线网站| 美女色网站在线观看不卡av| 黄色免费电影av 亚洲www啪成人一区二区麻豆 | 你懂的国产精品电影在线观看| 欧美激情另类一区二区| 正在播放国产av一区二区| 欧美日韩高潮喷水在线观看视频| 国产人妖一区二区在线| 俺也色亚洲色图中文字幕| 国产精品女人爽在线观看| 欧美巨猛xxxx猛交黑人97人| 亚洲中文字幕不卡一区二区三区| 隔壁老王国产精品| 日韩作一区二区三区| 亚洲欧洲中文日韩a乱码| 久久久五月婷熟女| 国产成av不卡在线观看| 五月天婷婷缴情五月免费观看| 激情综合婷婷丁香五月尤物| 国产高清一区国产高清二区| 中文字幕日韩二区| 天堂在线观看最新av| 国产精品一区视频| 精品久久久久久久久久不卡| 亚洲成人色电影在线观看| 国产av久久久久精东av| 国产v片不卡在线看| 日本人妻久久久中文字幕乱码| 亚洲日本在线在线看片| 男人的天堂午夜精品视频在线| 国产黄色一级免费观看| 欧美高清在线观看不卡| 黄片免费观看视频一区二区| 久久久一级精品黄色片| 在线不卡不卡一区二区| 国产欧美日韩一区在线| 日韩中文乱码字幕| 观看亚洲免费视频网站大全| 午夜在线成年人免费观看| 久久亚洲欧美一二三区| 日韩av片无码一区二区不卡| 亚洲欧美日韩在线播放| 男人添女人高潮在线观看| 国产一级片免费观看| 99这里只有精品| 欧美精品偷拍亚洲| 啊啊啊啊色国产又黄又爽| 亚洲美女少妇一区二区三区| 中文字幕精品日韩综合| 久久精精品久久噜噜| 亚瑟视频高清在线观看网站| 亚洲乳大丰满中文字幕少妇av| 四虎在线永久免费看精品| 精品亚洲成人7777在线观看| 日韩成人一区二区在线观看| 国产一区在线播放av| 免费的欧美一区二区| 少妇9999九九九九在线观看| 久久精品国产精品| 水蜜桃精品视频一区二区三区| 最新亚洲人妻系列| 艹少妇视频在线免费观看| 精品一区二区久久人人爽| 国产嫩草官方永久入口| 亚洲2022av国产精品| 日本中文字幕不卡| 欧美女↗区二区三区| 一区二区三区看的免费视频| 精品人妻av区乱码久久蜜臂| 国产精品一区二区三区免费视频| 2021国产一区二区| 日韩成人av免费观看网站| 欧美日韩国产精彩视频| 在线视频午夜国产| 99精品熟女视频| 欧美亚洲色图一区二区| 日韩免费中文字幕| 国肉精品国产三级国产av| 黄色永久网站在线免费观看| 亚洲欧洲国产综合专区www| 毛片地址在线播放| 视频在线观看一区二区| 国内自拍视频区一区二| 男人的午夜天堂免费在线| 欧美日韩久久亚洲| 国产一区精品免费观看| 国产又色又爽视频在线观看| 亚洲国产欧美视频在线看| 免费观看成年人黄片| 国产成人精品视频一区| 亚洲福利爱爱爱视频| 国产伦精品二区三区视频| 欧美精品1区2区| 成人a小视频在线观看| 中文字幕国产视频一区| 欧美一区二区不卡在线视频观看| 少妇久久一区二区| 日韩av在线中文字幕| 九九热视频/这里只有精品| 国产精品一区二区久久| 国产综合精品在线| 国产伦精品二区三区视频| 亚洲顶级av在线免费观看| 麻豆果冻精品一区二区| 亚洲天堂最新地址在线观看| 免费看国产三级黄片在线看不卡| 亚洲国产精品狗做人人爽| 玖玖资源麻豆中文字幕久久| 国产首页亚洲精品第一页| 永久黄网站色视频不卡在线观看| 亚洲欧美自拍另类图片| 成人粉嫩av一区二区| 2021国产一区二区| 四虎在线免费播放| 国产又黄又猛又粗又爽的视频边| 欧美中文字幕6666| 中文字幕 欧美一区| 欧美一级二级三级一区二区三区| 六月丁香亚洲综合| 国产一区在线播放av| 国产精品欧美激情久久| 亚洲综合色成在线观看| 成人av在线播放免费| 中文字幕在线观看国产| 老熟女无套内射国产视频 | 粉嫩一区二区三区| 91精品福利在线免费观看91| 国产精品日本一区二区视频| 亚洲avav久久| 国产又粗又爽欧美激情| 黄色av免费不卡 不卡免费黄色av| 欧美另类图片视频无弹跳第一页| 亚洲成人av大片 亚洲成人第一av看片| 国产日本在线欧美| 日韩欧美大片免费观看在线观看| 国产超碰人人做人人爱va九月| 亚洲三区视频二区| 日韩欧美大片免费观看在线观看| 国产在线中文字幕视频| 在线日本中文字幕网| 99热这里只有精品免费在线| 日本中文字幕不卡| 亚洲av有码乱码在线| 羞羞视频在线网站观看| 亚洲最大网站在线| 日本二区三区视频| 手机在线免费看黄色av| 最新国产精品视频导航| 非洲一区二区三区视频| 欧美成人中文字幕视频网站| 国产理伦片一区二区三区| 午夜精品久久久久久久99黑人| 大香蕉国产一区在线最新| 国产黄色大片一区二区三区| 真人少妇高潮久久免费毛片| 波多野结衣aⅴ一区| 国产成人久久精品蜜臀| 日韩精品久久久久影院| 欧洲三级久久久精品| 蜜桃av噜噜一区二区三区麻豆 | 精品美女极品美女在线观看网站 | 日本高清一道本一区| 欧美激情一区自拍| 欧美啪啪婷婷一区| 中文av在线人妻 国产日韩网站| 亚洲性bbbbbbbbbbbb| 欧美日本综合看片国产| www.久久精品| 哦美激情中文字幕亚洲| 天堂а在线地址8最新版| 99热这里只有精品6在线观看| 少妇欧美成人精品日韩网址 | 久久精品熟女少妇亚洲av| 亚洲男人天堂.av免费观看| 在线日本中文字幕网| 片多多在线观看影视资源| 亚洲中码中文字幕人妻电影| 国产精品午夜免费观看| 欧美精品成在线观看| 免费一区二区三区高清| 欧美日韩在线电影午夜视频| 久久国产精品伊人| 精品黄色免费中文电影在线播放| 免费网站日本a级淫片免费看| 国产精品美女三级| 日本中文字幕福利视频| 在线观看免费视频一卡二卡| 中文字幕亚洲综合久久2020| 成人免费看黄yyy456| av免费网站一区二区| 可以免费观看的亚洲av| 国产va精品免费观看| 国产精品色网久久| 中文字幕精品不卡| av影院一区二区三区| 中文字幕视频在线不卡| 正在播放老肥熟妇露脸| 日韩亚洲av日韩乱码| 日韩熟女视频精品| 午夜片一区二区三区| 国产免费一区二区三区播放| 青草av久久一区二区三区| 久久久久久91香蕉国产蜜臀| 一区二区三区午夜免费福利视频| 四虎在线永久免费看精品| 亚洲中码中文字幕人妻电影| 日韩精品视频这些网站在线观看 | 最新的亚洲不卡的一区在线| 国产精品不卡在线| 亚洲中文字幕永码永久在线| 国产综合精品在线| 男人添女人高潮在线观看| 女人久久久www免费人成看片| 日韩av 中文字幕在线不卡| 在线观看免费av大全| 国产激情中文字幕av| 国内网友自拍视频在线免费观看| 国产精品久久毛片影院| 亚洲+中文字幕+人妻| 蜜桃视频在线观看免费| 欧美日本日韩一二区视频| 午夜影视网站在线观看| 亚洲精品在线资源免费观看 | 日韩人妻无码精品系列| 亚洲乱码卡一卡二卡新区中国| 亚洲顶级av在线免费观看| 国产区日产区欧美区| 久久这里只有精彩视频香蕉| 久久精品国产亚洲av麻豆影视| 亚洲第一页第二页在线播放视频| 亚洲天码中文字幕在线观看| 国产精品又爽又黄一区二区三| 日韩欧美国产日本在线| 久久国产精品六区| 亚洲av午夜十八禁福利影视| 精品久久无套内射| 尤物国产在线一区| av福利一区在线看| 日韩一级黄色精品视频| 国产一精品一v一免费| 国产精品久久91久久| 国内在线视频网站在线观看免费| 国产成人真人视频| 亚洲国产综合日韩| 成人午夜av福利 成人午夜福利18 www成人午夜福利 | 欧美亚洲成人另类| 午夜欧美久久久久| 久久成人大片网站| 午夜久久一二三区| 国产非洲一区二区三区久久久| 亚洲欧美国产大片| 黄色的视频一区二区三区| 国产伊人精品99| 日韩涩涩一区二区三区| 欧美男男GAYGAY巨大粗长肥| 亚洲视频日韩在线视频| 日韩精品成人中文字幕| 直接播放日本高清视频在线网站| 欧美精品在线免费| 精品欧美一区二区三区播放| 伊人成人在线免费观看视频| 中文字幕网在线中文免费| 香蕉视频久久免费| 黄色永久网站在线免费观看 | 午夜性色福利影院| 美女大秀视频国产精品一区| 欧美人妻 自拍 第一页| 手机不卡在线观看视频| 久久中文字幕中出| 国内一区二区三区在线视频| 国产午夜福利在线观看播放| 中文字幕第一页在线看| 99精品国产乱码久久久| 国产一精品一v一免费| 亚洲欧美丝袜另类在线| 午夜在线成年人免费观看| 99精品熟女视频| 日韩一区二区三区 不卡AV | 日韩av大全在线播放| 中文字幕成人精品久久不卡| 欧美黑人粗大精品一区| 亚洲中文字幕乱码人妻2| 亚洲高清视频在线观看一区二区| 亚洲中字字幕中文乱码| 欧美亚洲色图一区二区| 亚洲国产精品a62v一区二区| 久久精品99久久香蕉欧美| 婷婷综合久久精品| 欧美视频在线观看一区二区免费| 久久九九国产精品一区| 亚洲国产一区二区电影| 亚洲av中文有码在线| 国产一级黄片在线播放视频| 午夜桃色国产精品| 国产日本亚洲福利18在线看| a级黄片免费观看久久| 精品国自产拍在线观看| 91在线视频免费播放| 免费看国产三级黄片在线看不卡| 日韩免费中文字幕| 黄网站大全免费国产| 少妇精品久久久久久网| 日韩精品中文字幕一区二区三区| 中文高清在线中文字幕日韩| 最近国产免费中文字幕| 伊人色在线综合网| 宅男噜噜66国产精品观看| 四虎影院日韩精品| 午夜爽爽久久久毛片| 一区二区三区亚洲一区二区三区| 日韩欧美高清久久久| 日韩精品成人一区| 欧美亚洲国产卡一| 999国产精品视频免费观看| 黄色电影在线免费看| 一区二区三区在线观看国产最新| 日韩国产在线观看不卡| 人妻无码中文专区久久av| 亚洲综合在线7777| 日韩av成人在线观看网站| 中文字幕三级在线播放| 乌克兰女人大白屁股ass| 午夜免费在线高清观看av| 一区二区三区三乱码精品毛片| 国产精品久久久久开码性色av| 美女aaaa黄色一级片免费的| 四虎在线永久免费看精品| 三级成年网站在线观看级爱网 | 久久国产香蕉视频| 成人免费看黄yyy456| 日本精品一区二区三区视频| 亚洲中文字幕一区熟女| 成人亚洲a片v一区二区三区蜜臀| 亚洲欧美国产中文日韩| 免费网站一区二区在线观看| 亚洲免费欧美在线观看| 中文字幕乱码在线亚洲| 亚洲欧美一区二三区| 久久久九九九精品视频| 国产激情精品一区二区三区波野| 久久午夜精品免费看| 2023小小精品女教师日韩精品亚洲人成在线播放 | 最新网址在线观看一区二区 | 日本二区在线观看| 亚洲avav久久| 亚洲欧美日本全免费| 欧美一级视频在线观看欧美| 成人 在线 日韩 欧美| 精品日韩国产欧美在线| 久久久久夜夜夜国产精品| 日本人妻久久久中文字幕乱码 | 久久99国产综合精品免费多人| 亚洲欧美日本高清在线| 2021最新精品国自产拍视频| 欧美色妞一区二区在线观看| 久久不射av中文字幕| 久久亚洲国产中文| 校园春色在线视频中文字幕| av不卡网站在线下载免费观看| 最新日韩av中文字幕| 亚洲av网站在线免费| 亚洲天堂网站在线观看视频| 久久久久国色av免费看图片| 国产精品黄色av电影网| 正在播放国产av一区二区| 亚洲欧洲中文字幕在线| 免费黄色小视频在线观看| 欧美精品1区2区| 大香大焦伊人中文字幕五月天| 精品美女极品美女在线观看网站 | 免费亚洲国产精品| 精品四虎免费观看国产高清| 99国产综合亚洲精品| 污亚洲一区网站在线观看| 丰满少妇熟乱xxxxx视频| 精品美女久久久av免费观看| 亚洲中码中文字幕人妻电影| 亚洲日本∨a中文字幕久久| 欧美日韩免费一级黄片| 亚洲欧美日韩在线播放| 久久久久久久国产av| 日本黄视频一区二区三区| 国产精品三级三级三级| 欧美福利一区二区三区| 日韩一区二区亚洲| 久久精品店一区二区三区| 中文字幕日韩第一精品| av成人一区二区三区| 综合亚洲综合图区网友自拍| 日韩精品一区二区av自拍| 人妻少妇精品视频在线免费观看| 亚洲欧美综合在线不卡| 宅男66lu国产在线观看| 99久久精品视频毛片| 精品久久久久久久中文字幕| 免费午夜福利在线网站| 你懂的国产精品电影在线观看| 色婷婷久久综合中文久久| 日韩a√中文字幕在线| 在线观看亚洲专区一二区| 欧美啪啪婷婷一区| 成人免费视频在线看| 欧美精品在线免费看| 亚洲精品女同一区二区三区网站| 国产精品视频我不卡| 99热精品在线观看白浆| 中文字幕成人亚洲乱码电影| 噜噜噜久久亚洲精品| 日韩精品免费视频看| 青青在线精品是免费视频观看| 国内揄拍高清国内精品对白| 日韩欧美高清国产视频| 欧美成人中文字幕视频网站| 国产成人精品99| 无码精品、日韩专区| 日韩欧美一区二区在线观看| 亚洲欧美国产67194| 成人网站色52色在线观看| 肉丝精品一区在线观看| 日韩国产亚洲视频在线观看| 美女丝袜在线观看一区二区| 在线观看免费视频亚洲精品| 天天去色综合久久婷婷| 精品少妇123区| 午夜视频在线观看黄片| 亚洲a∨精品一区二区三区导航 | 成人资源网在线91青青| 樱桃视频一区二区三区| 久久伊人不卡了精品酒店| 亚洲国产综合日韩| 亚洲a∨国产av综合av| 久久久久久蜜桃精品| 日本中文字幕福利视频| 中国成人精品网站| 国产福利诱惑一区| 亚洲欧美一区二三区 | 国产一区二区三区四区五区3d| 欧美日韩无线码免费播放| 国产日韩在线播放不卡欧美| 国产aⅴ爽av久久久久久| 国产精品欧美激情久久| 在线 91 大神精品| 91九色蝌蚪在线视频观看| 亚洲人妻高清视频| 999九九九精品视频在线观看| 日本电影一区二区在线观看| 欧洲97色综合成人网| 免费黄网站久久成人精品| 国产精品黄色av电影网| 人妻中文字幕顶级欧美熟妇高清| 亚洲乱码av一区二区蜜桃| 午夜片国内精彩视频一区二区| 国产在线精品一二三区不卡| 色婷婷久久综合中文久久| 午夜国产二三级黄色片 | 日韩三级另类视频| 精品一区二区三区四区国产片| 欧美精品偷拍亚洲| 亚洲夜夜草精品一区二区| 一区二区三区高清在线视频| 天堂在线观看av| 精品一区二区三区在线视频观看| 在线观看国产字幕乱码a| 永久免费av永久在线观看| 精品国产伦理在线| 中文字幕av女优天堂| 丰满人妻日韩一二三区不卡| 在线不卡不卡一区二区| 久9热免费在线视频| 日本一区二区三区视频在线看| 国产毛 片久久久久| 国产探花在线精品一区二区| 亚洲精品欧美一区二区| 国产mv在线免费观看| 国产三级在线观看不卡| 免费成人福利视频| 另类欧美日韩综合一区| 亚洲av网站在线播放| av免费网站一区二区| 手机看片1024一区二区三区| 国产av高清区一区二区三区| 午夜久久福利天堂av| 亚洲欧洲国产综合专区www| 午夜在线免费观看福利| 2021最新精品国自产拍视频| 亚洲欧美激情专区在线| 国产成人精品91| 在线三级日韩三级国产三级| 中文字幕福利一二三区| 中文字幕96久久激情亚洲精品| 日韩一区在线观看一区二区| 日韩亚洲国产av影片| 亚洲a版天堂一区二区三区| 日韩精品高清视频在线| 欧美人与牲禽动交精品一区 | 亚洲成人久久综合网| 国产精品一区不卡在线观看 | 不卡中文字幕视频在线| 国产中文字幕乱码在线| www.com亚洲| 亚洲国产黄片一区二区| 欧美人与动牲交aⅴ| 波多野结衣网站一区| 一区二区三区内射美女毛片| 亚洲色图日本不卡一区二区| 日韩av中文在线字幕| 国产XXX69麻豆国语对白 亚洲国产福利| 黄色的视频一区二区三区| 中文字幕在线观看国产| 黄网站色视频在线观看| 色午夜一av男人的天堂| 欧美日韩国产电影中文字幕 | 成人亚洲欧美视频在线观看| 亚洲国产精品午夜福利在线播放 | 少妇精品久久久久久网| 日韩作一区二区三区| 免费网站一区二区三区| 亚洲欧美日韩久久一区| 中文字幕第99页| 亚洲一区二区三区中| 日本一区两区三区不卡视频| 美女丝袜在线观看一区二区| 天天一区二区三区av| 欧美人与动牲交精品| 亚洲国产综合尤物| 欧美精品 在线观看| 欧美艳星一区二区视频| 一区二区三区av在线网| 肉丝精品一区在线观看| 91精品福利一区二区三区 | 久久久精品视频国产| 免费看的小黄片视频| 亚洲成人精品字幕| 人人爽人人爽69av| 亚洲激情视频在线观看不卡一二| 欧洲一级欧洲三级在线观看| 日韩综合精品视频在线观看| 亚洲欧洲中文日韩a乱码| 国产精品嫩草视频永久网址| 国产成人高清精品亚洲| 午夜性色福利影院| 日本黄色视频一区,二区| 熟女aⅴ一区二区三区| 伊人久久大香线蕉aⅴ色| 久久久一本精品99久久k精品66| 国产欧美日韩亚洲视频| 夜鲁鲁鲁夜夜综合交换视频| 国产国产一区二区三区| 亚洲乱码卡一卡二卡新区中国| 大伊香蕉精品视频在线天堂女 | 亚洲高清视频在线观看一区二区| 国产久精品久久久久久久影视| 国产精品嫩模高潮在线观看| 婷婷中文久久字幕| 粉嫩av夜夜澡人人爽人人| 最新精品国产av中文字幕| 亚洲av综合一区在线| 精品成人午夜久久久久久| 99热精品在线观看白浆| 久久中文字幕中出| 亚洲欧美另类日韩国产古典精品 | 日韩欧美精品中文字幕| 亚洲国产电影在线观看精品 | 久久精品国产护士电影九一| 国产suv精品一区二区12| 精品影院一区二区三区| 欧美成精品第一区二区三区欧美| 亚洲国产日韩中文字幕| 日韩在线二区三区免费| 欧美黑人粗大精品一区| 亚洲不卡中文字幕无码| 久久精品视频在线视频 | 国产精品四区在线观看| 最新欧美一区二区三区| 国产探花在线精品一区二区| 美女又黄又免费网站| 熟女aⅴ一区二区三区| 亚洲美女中文字幕在线视频| 亚洲 成人 欧美 国产91 日本视频高清www色 | 性色av一区二区在线| 国产精品久久2区| 国产午夜精品乱码人妻老太太| 欧美一区二区三区特级视频| 国产在线中文字幕视频| 大象传媒成人在线观看| 女性久久久久国产精品毛片| 超碰97人人做人人爱亚洲尤物| 日韩香蕉国产一区二区三区| 日本动漫黄h在线观看免费| 国产美女福利最新网址在线观看 | 亚洲狠狠人妻一区| 在线免费观看黄色网址| 日韩在线二区三区免费| 天天路综合网中文字幕在线观看| 亚洲美女福利视频网址| 午夜一级二级三级| 成人国产精品入口免费视频| 久久国产精品免费一区六九堂| 最新在线观看中文字幕| 中文无线乱码字幕在线观看| 精品国产拍国产天天人| a毛看片免费观看视频| 五月天堂久久综合| 国产精品24时在线播放| 一本色道久久综合亚洲精品高| www.成人a视频在线观看| 国产成人aⅴ在线免播放观看| 成人免费视频在线看| 日韩综合成人中文字幕| 久久国产精品99久久久久久牛牛| 久久久999中文字幕| 亚洲国产欧美一区点击进入| 在线观看不卡日韩视频| 国产精品日本一区二区| 久久久精品欧美综合| 日本女妇一区二区三区| a毛看片免费观看视频| 一本色道久久综合狠狠躁邻居| 精品久久久久久综合网| 国产精品久久久久开码性色av| 又黄又骚又爽国产| 日韩精品毛片视频| 亚洲福利 中文字幕| 99国产三级精品三级在线专区| 国产成av不卡在线观看| 成人美女av网站在线观看| 中文在线精品一区二区| 亚洲三级 在线观看| 日韩美女精品黄片| 国产精品网在线观看| 国产女同在线99| 日韩人一区二区三区| 免费观看日本在线观看视频| 欧美午夜精品久久久久久老年| 99视频国产精品| 成人免费黄色免费| 中文字幕一区不卡在线观看的| 久久av 中文字幕| 日本免费最新高清不卡视频| 亚洲国产a免费一区| 九九热这里只有国产精品视频| 亚洲欧美国产中文日韩| 亚洲片国产一区一级在线| JULIA手机在线观看精品 国产福利精品av综合导导航 | 久久精品 国产高清| 精品国产18禁久久久久久| 日韩精品一区二区三区久久| 亚洲国产另类精品视频| 国产视频一区二区三区亚洲| 亚洲三级 在线观看| 欧美日本最新在线一区视频 | 日本一区二区三区视频在线看| 日韩人体一区二区久久| 成人久久之高端视频| 给我免费播放毛片| 久久精品店一区二区三区| 亚洲天堂国产成人在线观看| 大香蕉国产一区在线最新| 波多野结衣国产av| 日韩一区二区在线精品视频| 黄色电影在线免费看| 偷拍人妻精品一区二区| 久久亚洲欧美精品| 中文字幕高清在线播放第一页| 亚洲毛片在线播放一区二区| 日本一区二区三区清视频| wwwxxx在线| 国产中文精品色婷婷综| av在线播放不卡一区二区三区| 久久伊人不卡了精品酒店| 久久精精品久久噜噜| 欧美精品 在线观看| a级黄片免费观看久久| 免费国产一级二级三级| 黄片欧美日韩亚洲一区三区| 亚洲动漫一区二区 激情小说| 日韩人妻一区二区爽| 欧美极品少妇xxxx喷水| 中文字幕第一在线观看视频| 久久综合精品色伊人| 精品亚洲欧美无人区乱码| 91午夜精品福利视频| 一区二区九亚洲观看三区不卡女| 在线观看啪视频中文字幕| 免费观看日本在线观看视频| 久久久九九九精品视频| 手机在线欧美日韩精品| 国产在线精品观看| 日本在线观看视频不卡一区| 黄色一区二区免费在线观看| 青青久久久成年综合视频| 亚洲综合视频在线播放| 国产一区二区三区免费网站| 成人漫画免费观看入口| 亚洲精美视频在线观看| 香蕉社区一区二区三区| 日本亚洲中文字幕在线| 一区二区欧美精品一区| 人人妻免费在线视频| 视频一区二区观看| 日韩欧美视频在线观看网站| 粉嫩蜜臀av国产精品网站| 国产日韩精品在线一区二区| 国产免费av网站入口| 国产成人精品一区二三区2022| 日韩欧美在线观看91| 老熟女无套内射国产视频| 国产精品大香蕉在在线| 成人小视频www国产| 一本一本久久a久久精品综合麻豆 国产久精品久久久久久久影视 | 色婷婷久久久wg精品| 亚洲国产精品久久久久秋霞不卡| 国产香蕉97久久精品| 日本视频在线视频一区二区| 久久久免费日本一区二区三区| 中文字幕日韩一级片在线观看| 免费日韩中文字幕av| 国产成人午夜福利在线小电影| 老司机免费精品福利视频| 欧美激情一区自拍| 日韩精品情趣视频| 国产成人久久久99| 亚洲国产一区二区a毛片变态| 国产亚洲精品拍拍拍拍拍| 国产一区二区三区四区五区入口| 亚洲精品中文字幕久久久久| 欧美黄片在线免费直播观看视频 | 婷婷中文字幕综合在线视频| 99国产精品丝袜美腿| www.久久国产精品视频| 亚洲精品视频导航| 欧美激情 另类综合| 日本视频高清在线播放| 久久精品久久久久| 亚洲人妻乱交在线视频| 国产精品久久久香蕉| 精品国产乱码久久久久久a丨| 精品婷婷在线观看| 日韩在线观看成人免费视频| 亚洲国产成人女人精品久久久| 国产999精品视频| 91精品在线亚洲综合| 在线观看亚洲国产一区二区三区| 亚洲福利爱爱爱视频| 国产精品久久久毛片基地无遮挡| 国产av一区二区三区| xxxx国产精品视频| 国产亚洲美女久久久久久男同| 玖玖玖国产精品一区二区| 骚货av一区二区 麻豆伊人一区二区 | 秋霞午夜成人鲁丝片午夜精品| 亚洲免费一区二区网站| 在线电影免费观看二卡av| 丁香五六婷婷久久| 精品国产手机一二三区| 日产中文字幕一码| 欧美成人精品成人综合在线播放| 美女搞基视频麻豆蜜桃久久| 黄片视频在线观看看| 国产精品久久久久精k8| 99国产一区二区在线| 波多野结衣国产av| 男人天堂一区二区av| 久久东京热日韩精品一区| 亚洲欧美日韩在线播放| 国产欧美手机在线观看| 午夜欧美熟妇一区不卡| 国产女同福利在线看| 手机看片国产永久免费在线观看| 97在线精品国自产拍中文| 欧美亚洲激情午夜网| 成人免费在线观看免费| 亚洲a∨精品一区二区三区导航| 秋霞电影在线五月婷婷激情综合| 精品亚洲国产成av人片传媒| 大象传媒成人在线观看| 成人h视频一区二区| 少妇特黄一区二区三区| 亚洲成a人一区二区三区| √最新版天堂资源网在线下载| 中文字幕在线观看视频第一页| 九九亚洲视频在线观看| 蜜臀av一区二区精品字幕| 国产成人v爽在线免播放观看| 手机福利看片永久免费| av在线免费电影三区四区| 欧美在线男人天堂| 免费一区二区三区高清| 亚洲狠狠色成人综合网| 亚洲中文字幕高清一区| 精品人妻伦九区久久片| 一区二区三级在线播放| 欧美1区二区三区| 片多多在线观看影视资源| 天堂精品三级在线观看| 国产一区二区三区新网址| 日韩美女视频资源吧a| 日韩网址制服诱惑中文字幕| 精品久久午夜免费| 欧美激情啪啪啪一区二区| 精品久久久久久中文字幕2017 | 国产在线精品成人欧美| 天堂在线观看av| 国产高清免费在线| 亚洲美女中文字幕在线视频| 国产真实一区二区三区| 视频欧美日韩亚洲| 午夜内射一区二区三区| 亚洲熟妇无码av另类vr影视| 精品视频精品91美女视频| 成人a小视频在线观看| 欧美一级大黄大色毛片视频| 久久夜色撩人精品国产| 18国产精品久久久| 黄瓜视频在线免费观看| 亚洲av综合色在线| 91精品福利一区二区三区| 最新精品国产av中文字幕| 福利免费视频观看| 日韩国产在线观看不卡| 精品久久久中文字幕二区| a级港片免费完整在线观看| 九九热这里只有精品免费看| 日韩人妻一区二区爽| 一区二区三区av在线网| 麻豆国产精品v在线观看| 免费网站一区二区在线观看| 久久777国产线看是看精品| 青草av久久一区二区三区| 亚洲一卡二卡三卡在看| 欧美精品在线免费看| 欧美自拍亚洲综合丝袜| 欧美男男GAYGAY巨大粗长肥| 91中文字幕视频在线永久观看| 中文字幕免费视频不卡二区| 亚洲国产精品成人av| 在线观看亚洲国产一区二区三区| 精品二精品一区二区视频 | 亚洲美女福利视频网址| 亚洲午夜18毛片在线看| 91一区二区观看| 丰满人妻乱淫精品.| 手机不卡在线观看视频| 天堂资源在线观看亚洲av| 五月婷婷色综合激情五月| 日本免费最新高清不卡视频| 午夜福利少妇亚洲| 117美女写真午夜一级| APP在线免费观看视频| 96精品国产高清在线看入口| 国产精品综合色区在线观看不| 国产午夜亚洲精品| 视频一区二区三区国内精品| 成人欧美一区二区三区视频xxx| 欧美精品一区二区精品久久| 日本高清一区二区三区水蜜桃| xxx黄片在线看| 欧美精品一区在线免费观看| 草草视频在线一区二区| 美女黄网站久久久久| 亚洲欧美日韩国产天堂| 一区二区欧美精品一区| 亚洲乱码av中文区| 91精品视频免费在线观看的| 中文字幕三区在线播放| 久久国产精品伊人| 日本久久一区二区三区精品| 视频一区二区懂色| 久久天堂夜夜一本婷婷喷水| 欧美综合视频一区二区| 亚洲中文字幕高清一区| 国产黄色美女免费看| 女女在线观看大全网站免费| 成年人视频在线观看网站| 精品亚洲欧美无人区乱码| 亚洲国产天堂影院精品网| 97国产精品国产品国语字幕| 亚洲欧美中文字幕制服诱惑| 久久国产精品伊人| 日韩在线观看精品| 91在线精品视频| 亚洲一区二区精品午夜| 不卡av二区在线 不卡的av在线一区| 精品欧美va在线观看| 在线观看中文字幕亚洲| 四虎在线免费播放| 永久免费av永久在线观看| 亚洲精品自拍成人| 中文字幕第三页在线播放| 欧美综合不卡顿视频在线观看| 国产一区二区免费午夜电影| 成人性色生活片全黄| 亚洲精麻豆18av| 国产高清乱码精品一区二区三区| 亚洲激情综合在线| 国产精品一区二区久久| 国产丝袜91久久久久久久久| 最新国产精品视频导航| 人人爽人人澡人人喊| 午夜xx免费视频| 久久精品一区二区免费播放| 大香大焦伊人中文字幕五月天| 在线精品免费观看视频| 欧美综合不卡顿视频在线观看| 蜜臀久久精品久久久久打不开| 黄色一区二区免费在线观看| 国产成人真人视频| 日韩一区二区在线精品视频| 精品国产成人综合| 精品不卡成人在线| 成人在线观看亚洲第一视频| 成人 在线 日韩 欧美| 久久99久久精品| 日韩一区在线观看一区二区| 五十路熟女视频一区和二区| 国产精品九九九九九| 国产精品日韩久久久久| 日韩欧美精品一区二区三区经典| 国产一区亚洲二区三区毛片| 日韩二区三区少妇| 中文字幕精品亚洲人在线| 午夜久久久久久亚洲欧美| 亚洲综合另类专区在线| 亚韩一区二区在线中文字幕| 国产专区 日韩精品| 日韩精品成人一区| 中国黄色一级大片在线观看| 日韩欧美视频免费观看 | 国产成人精品国内自产拍视频| 国产av一区二区6| 九九热这里只有精品免费看| 亚洲中文字幕一区四区| 日韩在线精品高清制服中文字幕| 国产aⅴ夜夜欢一区二区三区| 中文字幕一区二区在线不卡视频| 91久久一区二区三区| 久久亚洲色www成人| 亚洲最大黄色三级网站| 亚洲av网站在线播放| 人人澡人人人人澡人人超碰新 | 日韩欧美视频免费观看 | 亚洲精品一区二区三区视频| 中国福利视频一区二区| 在线黄色免费网站| 亚洲最大的天堂av网站| 国产经典三级在线观看视频| 精品欧美国产免费中文| 免费一区二区三区四区| 两个人免费看的日韩欧美视频| 中文字幕日韩二区| 欧美日韩精品不卡播放视频| 日韩欧美高清久久久| 成人高清在线观看91| 日韩福利电影在线一区二| 18禁黄国产精品一区二区白浆| 中文字幕视频大全网站| 免费一本色道久久一区熟人区| 蜜臀视频一区三区| 国产一区二区三区视频免费播放| 高清av黄色三级在线观看| 亚洲欧美丝袜另类在线| 亚洲精品中文字幕制服诱惑| 欧美日韩国产网站在线观看| 午夜福利在线播放免费| 午夜在线成年人免费观看| 国产午夜福利精品久久2021| 亚洲精品三区在线观看免费| 国产精品绯色蜜臀99久久| 欧美人与性动交另类| 国产又白又嫩又紧又爽18p| 一区二区在线观看夜视频| 久久久久久久久久久福利| 国产91对白在线播放边| 国产亚洲在线精品视频| 国产一区二区不卡在线 性色| 亚洲中文国内精品福利第一页| 精品久久成人性生活视频| 玖玖资源麻豆中文字幕久久| 欧美日韩91九色| 97精品国产高清一区二区三区| 欧美视频中文字幕| 91精品国产首页| 中文字幕精品日韩综合| 国产精品视频黄的免费| 久久精品店一区二区三区| 无码精品不卡一区二区三区| 视频一区二区三区资源| 中文字幕日韩一级| 欧美亚视频在线中文字幕免费| 欧美日韩www网站视频免费| 一级黄片免费观看| 少妇少妇久久久久久久久| 免费国产污网站在线观看| 久久夜色国产噜噜| 欧美人与性动交另类| 午夜久久成人福利视频| 偷拍亚洲欧美精品| 日韩一区二区三区成人在线| 国产精品情趣视频诱惑一区二区| 日韩少妇污一区二区三区| 国产女同福利在线看| 男人的午夜天堂免费在线| 日韩熟妇丰满人妻| 日韩免费一区二区人妻丝袜| 麻豆蜜桃一区二区三区| 亚洲国产免费不卡| 一区二区三区拍拍午夜福利视频| 午夜久久久久久亚洲欧美| 在线视频欧美亚洲| 国产v一区二区高清| 亚洲国产欧美日韩一级| 国产成人三级视频| 2021最新精品国自产拍视频| 欧美诱惑在线观看视频一区| 亚洲国产欧美精品一卡二卡三卡 | 黄色免费网址大全| 免费不卡视频在线播放| 一级少妇一区二区| 国产精品综合色区av| 欧美亚洲精品日韩精品| 免费看高清性色生活片| 欧美内射精品在线观看| 欧美亚洲日本国产综合网| 黄色av三级在线免费观看| 小泽玛利亚久久一区二区三区| 日本中文字幕福利视频| 午夜精品久久久久麻豆影视| 国产精品九九久久高清| 亚洲欧美视频一级网站| 亚洲中文字幕永码永久在线| 一级片免费视频中文字幕| 国产理论一区二区电影| 亚洲高清一二三区在线播放视频| 一级黄色大片免费在线观看| 欧美日韩国产亚洲黄片| 欧美国产日韩激情在线| 人妻无码中文专区久久av| 综合亚洲综合图区网友自拍| 亚洲国产精品欧美久久| 日韩中文字幕在线观看三区| 日韩av大全在线播放| 亚洲欧美另类黄色小说| 精品一区二区国产在线观看| 中文字幕日韩观看| 中文字幕 亚洲精品| 欧美日韩黄色一区| 久久66热re国产毛片基地| 精品一区二区免费视频观看| 国产色视频一区在线播放| 国产特级毛片aaaaaa| 日韩精品一区二区三区第99| 日韩精品久久网站免费看| 国产精品情趣视频诱惑一区二区| 一级少妇一区二区| 一区二区三区看的免费视频| 免费不卡视频在线播放| 国产va精品免费观看| 国产成人久久久99| 亚洲欧洲免费视频观看激情片| 国产在线一区二区你懂的 | 日韩欧美午夜久久| 中文字幕区二区三| 青草伊人久久综在合线亚洲观看| 久久久久黄色精品免费看| 国产女同性恋一区二区av| 麻豆中字一区二区md| 久久夜色精品国产aⅴ| 日韩影院成人精品| 成人在线观看美女| 美女毛片在线免费观看| 欧美性少妇xxxx极品高清hd| 国产又粗又长又猛又爽又黄视频| 久久夜色精品国产噜噜| 日韩成人在线观看视频| 国产三级精品三级男人的天堂,| 黄色免费在线国产| 91精品国产麻豆国产自产在线| 女同一区二区九九| 美女色网站在线观看不卡av| 精品久久久久久久人妻换| 国产原创在线观看91| 国产成人一区二区福利视频| 白浆 一区二区 久久| 亚洲一区二区国产专区| 国产在线一区二区你懂的| 亚洲国产日韩视频二区| 国产精品一区二区三区有码| 中文字幕视频人妻| 亚洲精美视频在线观看| 天天摸夜夜操免费视频| 97视频精品全国在线观看| 国产女同福利在线看| av深夜福利免费观看| 国产精品麻豆久久| 国产日本欧美在线看| 日本精品电影一区二区| 亚洲成人福利资源网| 亚洲乱码卡一卡二卡新区中国| 久久久婷婷综合亚洲av| 五月婷欧美国产中文字幕| 人人做天天爱夜夜| 国产又大又黄又粗又爽| 六月丁香亚洲综合| 91精品福利一区二区三区| 国产成人精品日本亚洲网站伊| 中文字幕第3页一区二区| 五月激情丁香久久| 日韩欧美综合精品成人在线视频| 中文字幕第二十一页在线| www.日本在线视频观看| 国产熟女激情高潮嗷嗷叫| 天天去色综合久久婷婷| 国产精品一区二区三区日日夜夜| 欧美色一区人人妻人人妻3d| 美女网站黄是免费看| 国产老女人精品一区二区三区 | 久久久久久黄色片| 97在线观看视频| 亚洲中文字幕永久免费观看| 中文字幕 欧美一区| 午夜精品久久久久麻豆影视| 亚洲中文字幕乱码人妻2| 免费观看欧美日本一区| 国产精品福利视频合集| 日本一级淫片免费放| 亚洲 欧洲 自拍 美女| 中国女人一级做受免费视频| 视频一区中文字幕亚洲| 日韩欧美素人制服中文| 一区二区在线看91| 亚洲精品在线资源免费观看| 国产99久久久国产精品免费看| 国产精品99久久久| 狠狠人妻久久久蜜桃| 日韩黄色大片网站网址| 欧美精品一区在线免费观看| 国产一区二区精品一区 | 91精品免费久久久久久久久| 精品亚洲不卡一区二区三区四区| 午夜在线亚洲精品福利| 亚洲观看在线www| 国产中文字幕亚洲国产| 黑人欧美一区二区三区4p| 欧美日韩国产一区夜夜| 波多野结衣网站一区| 国产免费一区三区三区视频 | 在线观看高清视频一区二区三区| 精品久久久久久人妻无| 国产国产精品一区二区| 日韩久久福利一区二区| 欧美日韩免费播放一区二区| 日韩 精品 综合 丝袜 制服| 国产精品网站的黄色| 欧美喷潮极限另类视频| 日韩精品免费视频播放| 日本一区二区三区人体| 九九在线精品视频久久| 激情视频一区二区三区在线观看 | 亚洲欧美日本国产一区| a∨色狠狠一区二区三区| √天堂中文www官网在线| 国产成人综合野草| 国产成人真人视频| 岛国av一区二区三区免费看| 美日韩在线调教变态av| 国产精品一区二区电影| 91人妻人人爽人人澡精品| 中国女人一级做受免费视频| 亚洲最大免费av在线播放| 亚洲电影欧美电影一区二区| 国产毛片精品视频| 欧美成人精品第一区二区三区在线| 少妇特黄一区二区三区| 国产成人女人在线观看| 欧美va一级在线观看| 亚洲成色www久久网站不卡| 美女视频十八禁免费在线观看| 国产丝袜美女一区二区三区| 色婷婷久久久wg精品| 精品国产网站在线观看91| 亚洲一区精品成人| 国产精品美女三级| 99热久久是有精品首页6| 国产精品一品久久| 国产aⅴ夜夜欢一区二区三区| 精品欧美va在线观看| 免费一本色道久久一区熟人区| 香蕉精品视频国产| 中文字幕国产视频一区| 欧美日韩精品一区二区三区视频播放| 最近国产免费中文字幕| 日韩av免费在线高清观看| 黄色大片日韩一区二区国产|